
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997 1171

A Boolean Expression-Based Approach for
Maximum Incomplete Subcube Identification

in Faulty Hypercubes
Hsing-Lung Chen, Member, IEEE, and Nian-Feng Tzeng, Senior Member, IEEE

Abstract —An incomplete hypercube possesses virtually every advantage of complete hypercubes, including simple deadlock-free
routing, a small diameter, bounded link traffic density, a good support of parallel algorithms, and so on. It is natural to reconfigure a
faulty hypercube into a maximum incomplete cube so as to lower potential performance degradation, because a hypercube so
reconfigured often results in a much larger system than what is attainable according to any conventional reconfiguration scheme
which identifies only complete subcubes. A maximum incomplete subcube involves one maximum complete subcube, plus certain
smaller complete subcubes, and, thus, may accommodate multiple jobs of different sizes simultaneously, delivering a higher
performance level. This paper proposes an efficient approach for identifying all the maximum incomplete subcubes present in a
faulty hypercube. The proposed approach is on the basis of manipulating Boolean expressions, with the search space reduced
considerably by taking advantage of the basic properties of faulty hypercubes during expression manipulation. It is distributed, in
that every healthy node executes the same identification algorithm independently, at the same time. It is confirmed by fault
simulation that our approach indeed gives rise to significantly larger reconfigured systems and requires short execution times.

Index Terms —Boolean expressions, distributed algorithms, faulty hypercubes, incomplete subcubes, reconfiguration.

—————————— ✦ ——————————

1 INTRODUCTION

HE hypercube has received considerable attention, and
many hypercube-based machines have been available

[1], [2], [3], [4], [5]. For a large hypercube system, the prob-
ability of faults arising is nonnegligible, and, over its mis-
sion duration, the system might involve one or several
faults, making it necessary to consider the fault-tolerant
issue in system design. It is possible for the hypercube to
achieve fault-tolerance without employing spares by recon-
figuring itself to a smaller sized system after faults occur,
operating in a gracefully degraded mode. Our focus in this
paper lies in such a fault-tolerant approach.

Several schemes have been proposed for reconfiguring
a hypercube with faults [6], [7], [8], [9], [10]. All these
schemes assume that only complete subcubes are permit-
ted and attempt to find the complete healthy subcubes
with the maximum dimension in a faulty hypercube.
They are often unable to maintain as many workable
nodes as desired, after reconfiguration, due to the strong
restriction on allowable system sizes. For example, a re-
configured hypercube in the presence of just one fault
contains merely half of its original nodes, discarding
many healthy nodes simply to meet the system size con-
straint, and possibly resulting in a severe performance

loss (as system performance tends to be in proportion to
the number of nodes).

This paper deals with an approach for identifying
maximum incomplete subcubes in a faulty hypercube, re-
taining as many healthy nodes as possible in order to keep
performance degradation minimal. Unlike a complete one,
an incomplete cube can be of any arbitrary size. A maxi-
mum incomplete subcube usually involves one maximum
complete subcube, plus certain smaller sized subcubes,
making it possible to finish a given batch of jobs faster than
its complete counterpart alone, by supporting simultaneous
execution of multiple jobs of different sizes. Moreover, an
incomplete subcube may carry out a given job faster by
assigning more nodes to execute the job cooperatively, in
view of the fact that the communication time for sending a
message to a remote node is only slightly larger than that to
a neighboring node on a contemporary hypercube, which
supports circuit switching or wormhole routing. This is
because the communication time in such a hypercube is
distance-insensitive, if no conflicts arise [18].

Simple and deadlock-free algorithms for routing and for
broadcasting messages in an incomplete cube have been
introduced [11]. These algorithms are essentially similar to
those for complete cubes [13], and, in fact, a unified set of
algorithms can be used for delivering messages in both
complete and incomplete cubes alike. A recent study on
incomplete cube systems revealed that no heavily loaded
point existed in such a system [12], [20], suggesting that a
faulty hypercube can be reconfigured into an incomplete
cube without creating any congestion point in it. The
maximum incomplete subcubes available in a faulty hyper-
cube are found, through extensive fault simulation, to be

1045-9219/97/$10.00 © 1997 IEEE

————————————————

• H.-L. Chen is with the Department of Electronic Engineering, National
Taiwan University of Science and Technology, 43 Keelung Rd., Sec. 4,
Taipei, Taiwan, R.O.C. E-mail: hlchen@et.ntust.edu.tw.

• N.-F. Tzeng is with The Center for Advanced Computer Studies, Univer-
sity of Southwestern Louisiana, P.O. Box 44330, Lafayette, LA 70504-
4330. E-mail: tzeng@cacs.usl.edu.

Manuscript received 5 Jan. 1996; revised 18 Aug. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100082.

T

1172 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

much larger than the maximum complete subcubes, as a
result of high flexibility in allowable system sizes. In fact,
for any random fault pattern in a hypercube, a maximum
incomplete subcube found in the hypercube has an average
size roughly two times as large as that of a maximum com-
plete subcube [19].

Our proposed identification approach uncovers all
maximum incomplete subcubes by taking advantage of the
basic properties of faulty hypercubes to reduce search space
considerably. For a given node and a set of faults in a faulty
hypercube, one can quickly derive all reject regions, which
consist of those nodes impossible to be a part of any fault-
free subcube containing the given node, and then arrives at
a Boolean expression that specifies the collection of all
healthy complete subcubes containing the given node, effi-
ciently and systematically. Next, the Boolean expression so
obtained is carefully manipulated to explore all the incom-
plete subcubes composed of these healthy complete sub-
cubes. Every fault-free node is involved in the identification
process concurrently and independently. In order to facili-
tate reconfiguration and avoid unnecessary traffic, the ad-
dresses of all maximum incomplete subcubes, after their
size is determined in a distributed manner, are sent non-
redundantly to the host by nodes elected via a distributed
procedure. The average time taken for each involved node
to carry out our identification algorithm is short, according
to the simulation results.

It should be noted that our reconfigured system may
drop some healthy nodes so as to preserve the incomplete
hypercube topology, to be defined in Section 2. If a system
attempts to maintain all the healthy nodes without assuring
the incomplete hypercube topology, it is impossible to have
simple deterministic routing and broadcasting algorithms.
In fact, for a hypercube with all the healthy nodes retained
after faults occur without reconfiguration, node-to-node
routing and broadcasting are often complicated and ineffi-
cient, realized on the basis of “sidetracking” [15],
“backtracking” [16], or duplicated transmission [17], which
do not guarantee the important property of deadlock-
freeness. Moreover, traffic density over a link under this
situation is not bounded by a small constant, and a message
is not necessarily routed through a shortest path (as in an
incomplete hypercube), possibly causing excessive com-
munication delay.

Various experiments have been carried out on the
iPSC/860 to study allocating tasks into incomplete hyper-
cubes and to contrast the performance difference on an in-
complete hypercube and on a complete counterpart.
Among the algorithms considered, matrix multiplication
requires virtually the same allocation on an incomplete hy-
percube as on a complete hypercube, using an identical
node program; whereas FFT involves slightly different allo-
cation on an incomplete hypercube than on a complete hy-
percube. Our experimental results [19] demonstrate that for
matrix multiplication, an incomplete system of size 24 may
outperform a complete system of size 16 by more than 45
percent; this is somewhat expected as matrix multiplication
is computation-intensive and the performance level is pro-
portional to the system size. In the other extreme, such as
FFT algorithms, in which communication is intensive, the

incomplete system still can achieve a performance gain of,
typically, six to 12 percent.

An algorithm for maximum incomplete subcube deter-
mination in a faulty hypercube has been discussed recently
in [22]. The earlier algorithm may determine only some
maximum incomplete subcubes present in a faulty hyper-
cube and is a centralized scheme, with the algorithm exe-
cuted by one single processor, say the host. The approach
proposed here, in contrast, identifies all maximum incom-
plete subcubes in existence and is a distributed method,
with every fault-free node involved in the identification
process. The rest of this article is organized as follows: Sec-
tion 2 provides notation and background relevant to subse-
quent presentation. The methodology of deriving the ex-
pression specifying subcubes which contain a given node is
described in Section 3. Pertinent features that help arrive at
the general expression for incomplete subcubes are pre-
sented in Section 4. Section 5 introduces the process of
finding incomplete subcubes involving a given node,
through Boolean expression manipulation. Distributed
identification of all maximum incomplete subcubes in a
faulty hypercube is provided in Section 6. The results of our
reconfiguration approach are given in Section 7.

2 PRELIMINARY

Let Hn denote an n-dimensional hypercube, which con-

sists of 2n nodes, each labeled by an n-bit string,

l l l ln n- -1 1 1 0L , where bit li corresponds to dimension i. A
link joins two nodes whose labels differ in exactly one bit
position. A k-dimensional subcube in Hn can be addressed

uniquely by a string of n symbols over set {0, 1, *}, where
* is a don’t care symbol, such that there are exactly k *'s in
the string. For example, a two-dimensional subcube in-
volving nodes 00011, 00111, 01011, and 01111 in H5 is ad-

dressed by 0**11, or, equivalently, 0*2
 12, where a c de-

notes c consecutive a ' s .
An n-dimensional incomplete hypercube with M

nodes, 2 21n nM- £ < , represented by In
M , is defined recur-

sively as follows: In
M comprises two components, Hn-1 and

Ik
M n- -2 1

(log ())k M n= - -
2

12 , with nodes in Hn-1 num-

bered from 0 to 2 11n- - and nodes in Ik
M n- -2 1

 numbered

from 2 1n- to M-1; a link exists between a node A in Hn-1

and another node B in Ik
M n- -2 1

, if and only if the addresses

of nodes A and B differ in exactly one bit. In
M comprises a

set of complete cubes of dimensions n - 1 and below, and
no two constituent cubes are of the same size. Incomplete
hypercube I5

26 , depicted in Fig. 1, for example, comprises

H4 and I4
10 , which, in turn, contains H3 and I H2

2
1= . Let the

binary representation of M be < >- -1 2 3 1 0x x x x xn n iL L , then

it is clear that In
M contains, in addition to Hn-1 , Hi’s, for all

xi = 1, 0 2£ £ -i n . Hi is a constituent cube of In
M if and

only if bit xi in the binary representation of M equals 1.

CHEN AND TZENG: A BOOLEAN EXPRESSION-BASED APPROACH FOR MAXIMUM INCOMPLETE SUBCUBE IDENTIFICATION 1173

Since there is only one binary representation for any given
number M, the set of constituent cubes in an incomplete
hypercube with size M is uniquely defined.

In a faulty complete hypercube, one or multiple fault-
free incomplete subcubes exist. Each such fault-free incom-
plete subcube is contained in exactly one smallest complete
subcube, called the minimum cover subcube. For fault-free
incomplete subcube Is

Y , Y > -2 1s , its minimum cover sub-

cube is of dimension s, i.e., Hs, and nodes which are in the

minimum cover subcube, but are outside Is
Y , form a sub-

cube (either a complete or an incomplete one), called the
conjugate subcube. Is

Y and its conjugate subcube together
form a complete subcube of dimension s, and the conjugate
subcube involves at least one fault (as otherwise, a fault-
free Hs exists). Every fault-free incomplete subcube Is

Y ,

Y > -2 1s , has one and only one conjugate subcube, denoted

by CS
s2 -Y . For example, the conjugate subcube of I5

26

shown in Fig. 1 is CS6, a three-dimensional, incomplete sub-

cube comprising H2 and H1.
The operations on subcubes in a hypercube can be per-

formed elegantly, following a way similar to Boolean alge-
bra, if a subcube is represented as a minterm, i.e., product of
Boolean variables, obtained from the address of the sub-
cube by replacing bit position i with bi (or bi), if position i is

1 (or 0), and then dropping all *'s. For example, subcube
*0**1 is represented by b b3 0 . The union of the three sub-

cubes: *0**1, *01*0, and *00*0, in H5 is given by

b b b b b b b b b b b b b3 0 3 2 0 3 2 0 3 0 3 0 3+ + = + = , which is *0*3. As
becomes clear later, the use of a Boolean expression to specify
the union of subcubes greatly facilitates our identification

procedure. Note that a null expression denotes the whole
hypercube.

From the expression for a union of subcubes in a hyper-
cube, one can get the addresses of all cube nodes outside the
union of subcubes directly, with the aid of DeMorgan’s
theorem. Consider the union of three subcubes in H5:

b b b b b W4 3 3 2 1+ + = , which, in fact, represents I5
26 , illus-

trated in Fig. 1. The collection of all the nodes outside W is
expressed by W b b b b b= + +4 3 3 2 1c hc hd i , which is simplified

to b4b3(b2 + b1), designating an incomplete subcube of size

six (i.e., the conjugate subcube of I5
26 , as expected; the gen-

eral expression for an incomplete subcube in a faulty hy-
percube will be introduced in Section 4).

3 EXPRESSION WITH RESPECT TO A GIVEN NODE

Consider a faulty hypercube Hn and a given node A in Hn.
It is possible to identify systematically every fault-free sub-
cube which involves the given node A. In other words, we
can arrive at the expression characterizing the set of P =
{Si | Si is a fault-free subcube in Hn and Si involves node A}
quickly and systematically, by determining “regions”
which never contribute to any fault-free subcube containing
the given node A [10] , [21]. Each fault results in one such
region, called a reject region, which is the smallest subcube
involving both the fault and the antipodal node of A, and
its address is given by performing operation ƒ on the la-
bels of the faulty node and the antipodal node, where ƒ is
the bit operation defined as follows: It yields 0 (or 1) if the
two corresponding bits are “0” (or “1”), and it is * if the two
corresponding bits differ. As an example, let H5 involve two
faulty nodes 11101 and 11010, and the given node A be
01101, then the antipodal node of A is 10010 and the two

Fig. 1. An incomplete hypercube with 26 nodes, I5
26

.

1174 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

reject regions are, respectively, 11101 ƒ 10010 = 1*4 and
11010 ƒ 10010 = 1*010. Any fault-free subcube involving
the given node (i.e., node A) in H5 can never contain any
node inside the two reject regions (specified by the two
faulty nodes 11101 and 11010) [21]. Assume that R denotes
the collection of all reject regions in Hn, one corresponding
to a fault. It has been shown [10], [21], by taking advantage
of interesting properties of faulty hypercubes, that all the
cubes nodes in Hn can be partitioned into two disjoint sets
with respect to node A: R and P. As a result, the fact that
knowing R can directly get P holds valid for any faulty hy-
percube, and it is fundamentally important to our identifi-
cation process.

From the labels of all faulty nodes and a given node, we
may quickly obtain the addresses of all reject regions
(simply by performing the ƒ operations). A reject region
which lies entirely inside another reject region is then re-
moved to avoid redundancy. Each reject region left after
removing redundancy is represented by a minterm. Expres-
sion R is the summation of all minterms, or, equivalently, is
given in the form of sum-of-product. From R, we immedi-
ately arrive at P R= , which is in the form of product-of-
sum (from DeMorgan’s theorem). Since P involves all the
fault-free subcubes containing the given node, we can
identify the largest incomplete subcube from P, based on
certain pertinent features described below.

4 PERTINENT FEATURES OF INCOMPLETE
SUBCUBES

Consider an s-dimensional incomplete subcube with size M
in Hn, Is

M . Let W M j,b g be the value obtained by resetting all
the bits in the binary representation of M except for the jth run
of “1”, with the first run of “1” starting from the most signifi-
cant bit. Given M = <1 1 1 0 0 1 1 0 1>, for example, W M, 1c h is
<1 1 1 0 0 0 0 0 0> and W M, 2c h equals <0 0 0 0 0 1 1 0 0>. It is

clear that Is
M consists of incomplete subcubes I MW ,1a f ,

I MW ,2a f , I MW ,3a f , and so on (note that the subscripts are
dropped from the subcube denotations for simplicity with-
out confusion, since they are defined by their sizes). The

next theorem reveals an interesting property of I MW ,1a f , and
its proof can be found in the Appendix.

THEOREM 1. Incomplete subcube I MW ,1a f of dimension s in Hn

involves exactly h s - 1a f-dimensional complete subcubes,

which together constitute I MW ,1a f , where h is the number
of nonzero bits in the binary representation of W M, 1c h.

Theorem 1 indicates that incomplete subcube I MW ,1a f can
be uniquely expressed by the collection of the h s - 1a f-
dimensional subcubes y y y z1 2L a n , for all 1 £ £n h , i.e.,

y y y z z z z1 2 1 2L L La n h+ + + + +e j . Note that these h complete

subcubes are overlapped. Let Π and ∑ denote the product
and the summation of Boolean variables, then the preced-

ing expression becomes yi
i

zj
j=

’
=
Â

1 1

a h
() .

Based on its recursive construction nature, Is
M is com-

posed of I MW ,1a f and I MW ,≥2a f , which denotes the incomplete

subcube comprising I MW , , ,d db g{ }= 2 3 L . The minterm rep-

resentation of any node in incomplete subcube I MW ,≥2a f

must involve Boolean variables y y1 2, ,L, and ya (since it is
in MC) as well as Boolean variables z z1 2, ,L, and zh (for,

otherwise, it would be in I MW ,1a f , whose minterm involves

the factor of zj
j=
Â

1

h

). In other words, the minterm represen-

tation of I MW ,≥2a f contains variables y y y z z1 2 1 2, , , , ,,L La ,
and zh (perhaps plus some other Boolean variables). Since

the minterm representation of CS(1) is y y y z z z1 2 1 2L La h ,

I MW ,≥2a f must fall completely in CS(1), as stated in the
lemma below.

LEMMA 1. Incomplete subcube I MW ,≥2a f is contained entirely in
CS(1).

In general, we may obtain the result with respect to in-

complete subcube I M lW ,≥b f for any l l, ≥ 2 , following a similar

argument as above: I M lW ,≥b f is contained entirely in CS(l - 1),
where CS(l - 1) denotes the conjugate subcube of incom-

plete subcube X W W W
l

M M M lI I I= » » » -(), , ,1 2 1a f a f b f
L . This

general result ensures that a specific incomplete subcube in
CS(l - 1) together with Xl forms Is

M , and it provides the

basis of our expression for Is
M . Consider the previous ex-

ample of M = <1 1 1 0 0 1 1 0 1>: CS(1) is a six-dimensional
complete subcube, in which a specific incomplete subcube

of size 13 (= <1 1 0 1>) together with I MW ,1a f forms I M
9 . It

should be noted that the specific constituent incomplete
subcube of I M

9 is the largest one in CS(1), which involves
one or multiple faults, since any incomplete subcube in

CS(1), together with I MW ,1a f , can form I M
9 . Let I MW ,1a f and

I MW ,≥2a f be expressed respectively by y zi
i

j
j

, ,()1
1

1
1

1 1

= =
’ Â

a h

 and

y zi
i

j
j

, ,1
1

1
1

1

1 1

= =
’ ’

a h

F , then the expression for Is
M is given by

y z zi
i

j
j

j
j

, , ,()1
1

1
1

1
1

1

1 1 1

= = =
’ Â ’+
a h h

F .

According to the rule of E EG E G+ = + , the preceding ex-
pression is equal to

y zi
i

j
j

, ,()1
1

1
1

1

1 1

= =
’ Â +

a h

F ,

since zj
j

,1
1

1

=
Â
h

 and zj
j

,1
1

1

=
’

h

 are complement with each other.

Incomplete subcube I MW ,2a f in CS(1) can be identified in a

similar way as finding I MW ,1a f in MC, and the remaining

part I MW ,≥3a f is contained totally in CS(2), giving rise to

CHEN AND TZENG: A BOOLEAN EXPRESSION-BASED APPROACH FOR MAXIMUM INCOMPLETE SUBCUBE IDENTIFICATION 1175

F F1 2
1

2
1

2

2 2

= +
= =

’ Ây zi
i

j
j

, ,()
a h

, where a 2 is the number of zero

bits between the first run of “1” and the second run of “1”
in the binary representation of M, h2 is the number of
nonzero bits in W M,2a f , yi ,2 and zj ,2 are Boolean variables

bis or bis , and F2 is determined by I MW ,≥3a f inside CS(2).
This process repeats until W M t, + =1 0a f , for a certain t,

and, at that time, all the runs of “1” in M have been ex-
hausted, resulting in the target incomplete subcube Is

M . The

general expression for Is
M is, thus,

y z y z y zi
i

j
j

i
i

j
j

i t
i

j t
j

t t

, , , , , ,((()))1
1

1
1

2
1

2
1 1 1

1 1 2 2

= = = = = =
’ Â ’ Â ’ Â+ + +
a h a h a h

L L . (1)

As an instance, the general expression for incomplete sub-
cube I5

26 in Hn is y y y z z y zn1,1 2 1 5 1 1,1 2 1 1,2 1,2, , ,(())L - + + , be-
cause, from 26 = <1 1 0 1 0>, a1 5= -n , h1 2= , a 2 1= , and
h2 1= . For n = 5, this general expression is reduced to
z z y z1,1 2 1 1,2 1,2+ +, (), which agrees with W given in Section 2

for representing I5
26 , by setting z b z b y b1,1 4 2 1 3 1,2 2= = =, ,, ,

and z b1,2 1= , as expected. Similarly, the expression for its

conjugate subcube, CS3
6 , is y y z z1,1 2 1 1,1 2 1, ,()+ for a1 5 3= -

and h1 2= , in agreement with W given in Section 2. Note
that a reconfigured incomplete hypercube often requires
renumbering the constituent nodes logically, and that is
why variables yi l, and zj l, in the general expression can be

any Boolean values bn or bn , 0 £ <n n .

5 FINDING INCOMPLETE SUBCUBES INVOLVING A
GIVEN NODE

A proper incomplete subcube in a faulty hypercube refers to
a fault-free incomplete subcube which is not contained en-
tirely in any other fault-free subcube. This section deals
with identifying all the proper incomplete subcubes from P,
which equals R (where R is the summation of all reject re-
gions represented in their minterms, as described in Section 3),
because nonproper incomplete subcubes cannot be the
largest ones. While a complete subcube can be represented
by a minterm, an incomplete subcube, in general, can be
expressed by the form given in (1), called a comterm
(standing for a compound term, denoted by Ci). It is easy to
see from (1) that a comterm is reduced to a minterm if
a i = 0 , for all i ≥ 2, and h j = 0 , for all j ≥ 1. A comterm is

thus an extended expression for subcubes, whether com-
plete or incomplete ones.

In order to identify all fault-free subcubes, we convert P
(in the product-of-sum form) to its sum-of-comterm
equivalence, which signifies the collection of all the proper
incomplete subcubes. During the conversion process, the
distributive law is applied to maxterms (sumterms) repeat-
edly until all expressions obtained are in the form of com-
terms given by (1). Applying the distributive law to the first
maxterm of x(y + z)(a + b) results in xy(a + b) + xz(a + b),
where terms xy(a + b) and xz(a + b) are called the genterms

(meaning generalized terms, denoted by Gi, which com-
prise the products of minterms and maxterms).

5.1 Conversion Process
The conversion process involves two steps:

1) determining an appropriate maxterm from P and ap-
plying the distributive law to the determined max-
term after it is added to P, and

2) extracting the largest common component present in
all the maxterms.

For a given P, the appropriate maxterm determined by and
to be added to P contains all the variables which appear in one
or multiple maxterms of P. Consider genterm x(y + z)(a + b)
given above, represented by G1, as an example. In Step 1,
the maxterm determined is (y + z + a + b), which is added to
G1, and the distributive law is applied to the added maxterm
in x(y + z + a + b)(y + z)(a + b), giving rise to xy(y + z)(a + b) +
xz(y + z)(a + b) + xa(y + z)(a + b) + xb(y + z)(a + b), which be-
comes xy(a + b) + xz(a + b) + xa(y + z) + xb(y + z) after un-
necessary terms are dropped; for example, term xyz(a + b) is
dropped, since it is contained in xy(a + b). The reason for
Step 1 to be involved is because comterms, unlike minterms
or maxterms, do not possess the commutative property,
and all the distinct comterms specified by P have to be de-
rived, so that all the proper incomplete subcubes referred to
by P are explored. Without Step 1, some comterms could be
left out, possibly making certain proper incomplete sub-
cubes unexplored, and, thus, rendering it unable to identify
all maximum incomplete subcubes in existence. Example G1
without Step 1 yields only two comterms: xy(a + b) and
xz(a + b), with the other two xa(y + z) and xb(y + z) left out.

The purpose of Step 2 is to guarantee producing com-
terms which denote the largest incomplete subcubes possi-
ble. Take G2 = x(a + y)(a + b + c)(a + b + d) as an instance. All
the three maxterms have common component “a,” which is
extracted, leading to x(a + y(b + c)(b + d)), where a new
genterm y(b + c)(b + d) is created. Step 2) is applied again,
resulting in comterm x(a + y(b + cd)), which refers to a larg-
est incomplete subcube. For any given P, Steps 1 and 2 ap-
ply repeatedly until every expression obtained is a com-
term, and each expression then refers to one incomplete
subcube.

Consider a given node 000110 in H6 with four faults:
010011, 101111, 100101, and 110110. The antipodal node of
000110 is 111001, and the four reject regions are 010011 ⊗
111001, 101111 ⊗ 111001, 100101 ⊗ 111001, and 110110 ⊗
111001, yielding R b b b b b b b b b b b= + + +4 2 0 5 3 0 5 1 0 5 4 . Expres-
sion P for the given node is

P b b b b b b b b b b b= + + + + + + +4 2 0 5 3 0 5 1 0 5 4d id id id i . (2)

This expression is converted into its sum-of-comterm
equivalence by applying the above two steps repeatedly, as
depicted in Fig. 2, where the result is the collection of the
incomplete subcube specified by comterms given at the
leaves of the tree.

At the first level of conversion, the distributive law is
applied to ()b b b b b b0 1 2 3 4 5+ + + + + according to conver-
sion Step 1, yielding six genterms, each due to one variable,
as indicated by an arrow with the variable shown next to it.

1176 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

Conversion Step 2 is then applied to each created genterm
which has a common variable present in all its maxterms.
The genterm created due to b2, i.e.,

b b b b b b b b b2 5 3 0 5 1 0 5 4()()()+ + + + + ,

for example, has variable b5 in common and, thus, becomes
b b b b b b b2 5 4 3 0 1 0(()())+ + + after the common variable is ex-
tracted. This extraction process repeats for genterm
b b b b b4 3 0 1 0()()+ + , as all its maxterms involve common
variable b0 , leading to b b b b b b2 5 4 0 3 1((()()))+ + , as illustrated
in Fig. 2. Similarly, Step 2 is applied to the genterm pro-
duced due to b4 . After common variables are extracted,

genterms produced due to b2 and b4 are in the form of
comterms as desired.

For the genterms created due to variables b1 and b3 ,
they are not in the form of comterms yet, so Step 1 is fol-
lowed to distribute, respectively, ()b b b b b0 2 3 4 5+ + + +
and ()b b b b b0 1 2 4 5+ + + + over them, as depicted in the
second level of Fig. 2. After this distribution, some newly
produced genterms require Step 2 to extract common
components, arriving at the desired comterm form. In this
case, the expressions obtained after Step 2 are all in the
form of comterms and the conversion process finishes.

5.2 Simplification Criteria
In the course of conversion shown in Fig. 2, many unneces-
sary comterms are produced, suggesting that simplification
could be incorporated to save conversion effort (where a
comterm is unnecessary if it is identical, or belongs, to an-
other comterm). Our goal is to avoid unnecessary comterms
from being created in the conversion process so that the

comterms produced at the end all correspond to proper
incomplete subcubes, involving much less effort. The sub-
sequent two lemmas provide the basis of our simplification
criteria to be included in the conversion process.

LEMMA 2. Let expressions Ei and Ej be generated from Ef due to
variables bi and bj, respectively. If all maxterms in Ei in-
volve a common component and so do all maxterms in Ej,
then incomplete subcubes specified by Ei and Ej, denoted,
respectively, as ISi and ISj, satisfy ISi ⊄ ISj and ISj ⊄ ISi.

PROOF. Assume the genterm in Ef being Gf (note that Ef gen-
erates other expressions via distribution only if it is
not in the comterm form and involves a genterm).
Since distribution through Step 1 is done over the Gf
part only, leaving the rest unchanged, the following
discussion focuses merely on the results in Ei and Ej
contributed by Gf . Let the results be denoted, respec-
tively, by bi(Ci + Gi) and bj(Cj + Gj) after Step 2 is ap-
plied, where Ci and Cj are common components ex-
tracted, and Gi and Gj are genterms obtained after ex-
traction. Two cases are discussed separately below,
depending on the numbers of variables contained in
Ci and Cj.

1) Both Ci and Cj contain two or more variables.

In this case, biCi and bjCj would satisfy biCi ⊄ bjCj
and bjCj ⊄ biCi, regardless of what are involved in Ci
and Cj. This means ISi ⊄ ISj and ISj ⊄ ISi.

2) Either Ci or Cj contains exactly one variable.

Let us examine the situation that Ci contains ex-
actly one variable, say bk, and Cj contains one or more
variables. In this situation, if bk ≠ bj or Cj doesn’t con-
tain bi, then we have bibk ⊄ bjCj and bjCj ⊄ bibk. On the
other hand, if bk = bj and Cj contains bi, Gi doesn’t

Fig. 2. Converting a product-of-sum expression into its sum-of-comterm equivalence.

CHEN AND TZENG: A BOOLEAN EXPRESSION-BASED APPROACH FOR MAXIMUM INCOMPLETE SUBCUBE IDENTIFICATION 1177

contain bj and Gj doesn’t contain bi, leading to biGi ⊄
bjGj and bjGj ⊄ biGi. In this situation, the relation of ISi
⊄ ISj and ISj ⊄ ISi always holds. The other situation
that Cj contains exactly one variable can be proved
similarly. �

This lemma indicates that all expressions derived from Ef

have to be treated further, if they may follow conversion
Step 2 to extract common components; none of them can be
discarded immediately. In Fig. 2, for example, expressions
derived due to b2 and b4 in the first level are treated until
they are in the comterm form, referring to two proper in-
complete subcubes.
LEMMA 3. Let expressions Ei and Ej be generated from Ef due to

variables bi and bj, respectively. If all maxterms in Ej share
no common component, then the incomplete subcube speci-
fied by the expression produced subsequently from Ej due to
bi is contained entirely in the incomplete subcube specified
by Ei.

PROOF. As before, our focus is limited to the results caused
by distribution over genterm Gf in Ef, leaving out the
unchanged parts. Suppose that, after distribution, Ei
involves genterm biGi and Ej involves genterm bjGj,
where Gi (or Gj) is Gf with every maxterm containing
bi (or bj) dropped. Since all maxterms in Gj share no
common component and Ej is not in the comterm
form yet, conversion Step 1 is applied again, produc-
ing an expression, say Ek, due to variable bi. It is clear
that Ek involves bjbiGk, where genterm Gk is Gj, with
every maxterm containing bi discarded. As Gk is Gf
with every maxterm containing either bj or bi
dropped, Gi involves more maxterms than Gk, imply-
ing that bjbiGk ⊂ biGi. In other words, the expression
produced subsequently from Ej due to bi, i.e., Ek, is
contained in Ei. �

This lemma reveals an interesting attribute that tells
which expressions to be generated are contained in prior
expressions and, thereby, can be dropped, often resulting in
significantly less conversion effort. To this end, a set of

“discarded” variables is kept for each expression generated
by distribution, where the set involves all the Boolean vari-
ables that have been distributed (over the same expression)
so far. Take the first level of Fig. 3 as an example. There are
six variables to be distributed over the given (same) expres-
sion, and the set of discarded variables for expression gen-
erated due to b1 is b b b b0 5 4 2, , ,n s , as depicted in the figure.

The set of discarded variables is forwarded to the next level
in order to prevent distributing them over the expression
generated (due to variable b1 in this example), because, ac-
cording to Lemma 3, if all the maxterms in this generated
expression share no common component, any expression
produced subsequently by distributing a discarded variable
is unnecessary. Distribution over the expression generated
due to variable b1 in level 1 is thus carried out for variable
b3 only, excluding all discarded variables as shown in level 2
of Fig. 3. It should be noted that, if all maxterms in a gener-
ated expression share a common component, the set of dis-
carded variables is flushed and distribution, if needed, is
performed for every variable existing in maxterms.

From Lemmas 2 and 3, we arrive at the simplification
criteria to be incorporated in our conversion process.

1) The distribution sequence for an expression, say, E,
follows that the variable which yields an expression
with a common variable present in all its maxterms is
treated first (recall that, if a variable appears in all
maxterms, the variable is extracted); in case there are
multiple choices, the one that appears in more max-
terms of E is selected earlier; and

2) The set of discarded variables is produced for each ex-
pression generated at level i and the set is employed by
the expression generated to avoid unnecessary distri-
bution at level i + 1, provided that all the maxterms in
the expression share no common component.

Making use of these simplification criteria, we obtain the
conversion result of expression P for the faulty H6 given by (2),
as illustrated in Fig. 3, where the set of discarded variables

Fig. 3. Conversion with the simplification criteria incorporated.

1178 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

for the jth expression generated in level i is denoted by ∆i,j

(with expressions in a level numbered rightwards). In the
first level, variables b b b0 5 4, , , and b2 all yield expressions with
common variables present in all their maxterms, but b0 and
b5 are distributed earlier, since they appear in the largest
number of maxterms of P. The set of discarded variables for
expression b b b b b b b b b1 4 2 0 5 3 0 5 4 1,5()()(),+ + + + + D , is used
during level 2 distribution by the expression, as shown in
the figure. If the set of discarded variables for an expres-
sion involves all maxterm variables, the expression re-
quires no distribution, like the last expression in level 1 of
Fig. 3. The conversion process with the aid of the simplifi-
cation criteria produces only necessary comterms (i.e.,
proper incomplete subcubes, see Fig. 3) as desired, saving
lots of effort, and the collection of comterms produced is
identical to that depicted in Fig. 2 after those unnecessary
comterms are removed.

An algorithm for generating the sum-of-comterm (SOC)
equivalence of a given product-of-sum expression P is pro-
vided below, where a stack is employed to keep expres-
sions produced in the course of conversion, as well as their
corresponding sets of discarded variables. The stack holds
only expression P initially, and both the set of discarded
variables for P and SOC are initialized with ∅. After the
algorithm ends, all comterms produced are stored in SOC,
which is then scanned to find the largest size.

Algorithm A. (generate a sum-of-comterm equivalence):

While (the stack is not empty)
 {

Pop an expression Ei, together with its corre-
sponding set of discarded variables, from the stack;
Let Gi be the genterm involved in Ei;
While (all maxterms in Gi share a common variable)
 {
 Extract the common variable according to
 conversion Step 2;
 Flush the set of discarded variables;
 }
If (Gi is in the comterm form, i.e., involves no more
than one maxterm)
 Append the comterm derived from Ei to SOC;
else {

Apply the distributive law to each variable
in maxterms of Gi, excluding discarded
variables;
Determine the sets of discarded variables
for expressions newly generated;
Push all generated expressions and their
corresponding sets of discarded variables
into the stack.

 }
 }

Since our conversion process explores all incomplete
subcubes which are specified by expression P and which
contain a given node, Algorithm A is insured to identify
all proper incomplete subcubes with respect to the given
node, as the simplification criteria remove only unnecessary

expressions. The size of an incomplete subcube specified by
a comterm can be directly obtained from (1), as follows: Let
the size be represented as an n-bit string, then the bit string
(starting from the leftmost bit) consists of a1 0’s, followed
by h1 1’s, followed by a 2 0’s, followed by h2 1’s, and so on,
until the comterm is exhausted; if the string formed is of
length less than n, say l, then (n - l) 0’s are appended to the
string. For example, comterm b b b b5 4 2 0()+ + in Fig. 3 is of

size 28 (= 0111002, as a1 1= and h1 3= , with two ap-
pended 0’s), whereas comterm b b b b b b2 5 4 0 3 1((()()))+ + is of

size 21 (= 0101012, as a hi j= = 1, for all 1 3£ £i j,). After

examing all five comterms produced in Fig. 3, we find that
the size of the largest incomplete subcube characterized by
P, given in (2), is 28.

5.3 Time Complexity
The worst case time complexity of Algorithm A can be de-
rived by finding out how many expressions (i.e., Ei’s) at
most are examined during conversion. All expressions ex-
amined constitute a tree structure (called an expansion tree,
see Fig. 3), with an expression corresponding to a tree node
and leaf nodes denoting incomplete subcubes obtained.
While Algorithm A is implemented using a stack (for more
efficiency), its time complexity can be derived from a recur-
sive standpoint. Let Lm n() denote the worst case time com-

plexity of Algorithm A applied to Hn with m faults. Initially,
expression P contains up to m maxterms, one correspond-
ing to a fault, and each maxterm involves at most n - 1
(distinct) variables for an n-dimensional hypercube. When
the distributive law is first applied, it produces n expres-
sions, according to conversion Step 1. Since expression P

involves up to m(n - 1) variables, and, applying the dis-
tributive law goes through P exactly n times, the time com-
plexity of this step is O(m × n2).

Now, every one of these produced n expressions corre-
sponds to an (n - 1)-dimension hypercube, which is speci-
fied by the distributed variable. It is apparent that such an
(n - 1)-dimension hypercube contains no more than m
faults. There are two possibilities to every such produced
expression: applying conversion Step 2, or applying Algo-
rithm A. They both examine the maximum healthy sub-
cubes inside Hn-1 and are applied exclusively (see Fig. 3).
When a common variable is identified by conversion Step 2,
it is extracted from all maxterms, leaving the maxterms cor-
responding to Hn-2; otherwise, Algorithm A is applied. If
Algorithm A is applied, its time complexity is Lm n()- 1 ,
neglecting the effect of the use of discarded variables
(which tends to largely reduce complexity). As applying
conversion Step 2 leads to time complexity less than
Lm n()- 1 , the time complexity of examining each Hn-1 is
Lm n()- 1 . This suggests the recurrence inequality of

L Lm mn m n n n()) ()£ ¥ + ¥ -O(2 1 , with Lm()2 1= . Fol-
lowing the exponential generating functions, we arrive at
Lm n m n() !)£ ¥O(. The time complexity of Algorithm A is
thus upper bounded by O(m × n!).

CHEN AND TZENG: A BOOLEAN EXPRESSION-BASED APPROACH FOR MAXIMUM INCOMPLETE SUBCUBE IDENTIFICATION 1179

6 DISTRIBUTED IDENTIFICATION OF ALL MAXIMUM
INCOMPLETE SUBCUBES

Algorithm A lends itself perfectly to distributed identifica-
tion by being executed at every healthy node independ-
ently, with the executing node itself treated as the given
node. It is assumed that the set of faulty nodes is uncovered
in a distributed manner by fault-free nodes, following the
diagnostic algorithm introduced by Armstrong and Gray
[14]. After fault diagnosis is done, the address of a faulty
node is broadcast to all nodes by a healthy neighbor, and
every healthy node keeps this broadcast information.

On receiving the addresses of all faulty nodes, each
healthy node identifies all the largest incomplete subcubes
involving the node itself, using Algorithm A. For a faulty
Hn, there are, in general, O(2n) nodes participating in the
identification process, and information calculated at each
participant about the largest incomplete subcubes has to be
taken into account in reaching the decision on maximum
incomplete subcubes globally, i.e., the size of the maximum
incomplete subcubes in the whole system is determined
based on the largest incomplete subcube size found at each
participating node.

We assume that the hypercube system has one host (also
known as the service node or system manager), which is in
charge of reconfiguration after receiving the comterms de-
noting maximum incomplete subcubes (called the maximum
comterms for short), and which has a direct connection to
each cube node, like the Intel iPSC/860 [3] and n-CUBE 2
[4]. A distributed approach to determining the size of
maximum incomplete subcubes is introduced next, fol-
lowed by an algorithm which ensures sending all maxi-
mum comterms to the host nonredundantly. Cube nodes
are partitioned into n + 1 levels, according to the number of
nonzero bits in their labels. For example, node 0000 is in
level 0, nodes 1000 and 0010 are in level 1, and so on. A
level i node has neighbors in level i - 1 or i + 1.

6.1 Size Determination
Consider a fault-free node at level i, 0 < £i n , in Hn. The
node, after carrying out Algorithm A, waits to receive the
size of the largest incomplete subcube(s) determined at a
healthy neighbor in level i - 1. A node is assumed to know
the status of all its neighbors and ignores messages from its
faulty neighbors. Once receiving messages from all its
healthy level i - 1 neighbors, the node chooses the largest
one among all received sizes and the size it found using
Algorithm A, and sends the chosen largest size to all its
neighbors in level i + 1 (where the level i + 1 neighbor of
node 1n is the host). Node 0n receives no messages and
sends the largest size it found to all its neighbors immedi-
ately after finishing Algorithm A.

In case a node in level i has no fault-free neighbor in
level i - 1, it forwards the largest size it found immediately
to all its neighbors in level i + 1. On the other hand, if a
level i node has no healthy neighbor in level i + 1, it simply
sends the largest size chosen to the host. In the last step of
this determination, if the host receives multiple sizes, it se-
lects the largest one as the size of the maximum com-
term(s). The maximum size is then broadcast to all healthy
nodes by the host, so that each node knows whether or not

it contains the maximum comterm(s). For an n-dimensional
hypercube with m faults, the total number of messages sent
to the host depends on the distribution of these faults and is
always less than n × m, since the failure of node 1n causes n
messages to be sent to the host, and any other fault results
in fewer than n messages directed to the host.

6.2 Gathering Maximum Comterms
All maximum comterms are forwarded to the host so as to
facilitate reconfiguration. It is desirable that comterms are
sent to the host nonredundantly, in an attempt to avoid
unnecessary traffic and computation. The subsequent theo-
rem provides the basis for nonredundant delivery of com-
terms to the host.

THEOREM 2. All the healthy nodes which come out with an identi-
cal maximum comterm form a fault-free complete subcube.

PROOF. The comterm is generally expressed as (1). Let the
maximum comterm of interest be

C y z y

z y z

i
i

j
j

i
i

j
j

i t
i

j t
j

t t

max , , ,

, , ,

(

(())) .

= +

+ +

= = =

= = =

’ Â ’

Â ’ Â

1
1

1
1

2
1

2
1 1 1

1 1 2

2

a h a

h a h

L L

Now, consider the specific complete subcube, Sb , ad-

dressed by

y z y z y zi j i j i t j t
jijiji

tt

, , , , , ,1 1 2 2
111111

2211

L
======

’’’’’’
hahaha

. (3)

It is clear that any node in Sb , say, node O, is con-

tained in the following complete subcubes: y zi j
i

, ,1 1
1

1

=
’

a

,

for all 1 1 1 2 2
11

21

£ £
==

’’j y y zi i j
ii

h
aa

; , , , , for all 1 2£ £j h ; L,

and y y y zi i i t j t
iii

t

, , , ,1 2
111

21

L
===

’’’
aaa

, for all 1 £ £j th . Conse-

quently, Algorithm A, with respect to node O, recog-
nizes these complete subcubes and probes the incom-
plete subcube composed of all these complete sub-
cubes, which is the largest incomplete subcube con-
taining node O, and which is specified by Cmax. This

indicates that node O comes out with Cmax, for any
node O in Sb .

On the other hand, for any node X outside subcube
Sb , it is easy to show that node X is not in at least one

of the constituent complete subcubes of the incom-
plete subcube defined by Cmax. Thus, the largest in-
complete subcube explored is different from the one
specified by Cmax. �

According to Theorem 2, we let one and only one node
in Sb be responsible for sending the maximum comterm(s)

to the host, preventing any redundancy. Among all the Sb

nodes, there is exactly one node at the highest level and that

1180 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

node is designated as the responsible node. The following
algorithm elects the responsible node(s) in a distributed
way, on the basis of the fact stated in Theorem 2: Each node
in level i - 1, 0 < £i n , sends the largest comterm(s) it
found, if any, to all its neighbors in level i; if no such com-
term is involved, it sends out a specific string, say the
empty string. A level i node responds to messages from
level i - 1 nodes individually: If a received message carries
the same comterm(s) as what the node found, the node re-
sponds by sending the comterm(s) back; else, it responds
with the specific (empty) string. If the receiving node in
level i involves no maximum comterms, it responds to
every message from level i - 1 with the empty string. A
node in level i - 1 waits until all responses from level i ar-
rive, and if any of the received response involves the same
comterm(s) as what the node itself found, the node is not a
responsible node for directing the comterm(s) to the host;
otherwise, it is a responsible node.

According to the preceding algorithm, the single node at
the highest level within subcube Sb is identified as the re-

sponsible node, and every such subcube has one responsi-
ble node determined. All the maximum comterm(s) are
thus forwarded to the host nonredundantly. As an exam-
ple, consider H4 with faults at 0010, 0110, 1010, and 1110, as
depicted in Fig. 4. The maximum incomplete subcube
available is of size 12, and its comterm is given by b b1 0+ .
From Theorem 2, the nodes which come out with the
maximum comterm fall into a complete subcube Sb , whose

minterm representation is b b1 0 (from (3)), or equivalently,

**01. This can be quickly validated by calculating expres-
sion P for each node in **01 and then following Algorithm A
to get the largest comterm; any other healthy node outside
**01 has P which covers fewer nodes. Exactly one node
within **01 is at the highest level, i.e., node 1101. Accord-
ing to the above algorithm, node 0001 receives the maxi-
mum comterm back from node 1001 and node 0101,
whereas nodes 1001 and 0101 receive the maximum com-
term back from node 1101, indicating that they are not re-
sponsible nodes. Since node 1101 receives the empty string
back from node 1111, it is the responsible node.

As another example, if H4 in Fig. 4 involves only two

faults, 0010 and 1110 (rather than four faults), the maxi-
mum subcubes available are then of size 13, specified,
respectively, by b b b b1 0 2 3+ + () and b b b b1 0 2 3+ + () . The
nodes which come out with these two maximum comterms
following Algorithm A are b b b b3 2 1 0 and b b b b3 2 1 0 , respec-
tively, each of which is a zero-dimensional subcube. They
are identified as the responsible nodes trivially.

7 Fault Simulation and Results
The results of our proposed identification strategy were
collected using fault simulation for a 10-dimensional hy-
percube, in which the number of faulty nodes (m) ranges
from two to 20. This simulation study was carried out on a
SUN Sparc 10/20. For each given m, 5,000 uniformly dis-
tributed fault patterns were generated and reconfiguration
was performed with respect to every fault pattern indi-
vidually. The average size of maximum incomplete sub-
cubes is plotted as a function of m in Fig. 5, with the mean
size of largest complete subcubes included for comparison.
It is observed that the gap between the average maximum
incomplete subcube size and the mean maximum complete
subcube size is the largest for m = 1, as might be expected.
While the gap shrinks gradually as m increases, the former
remains close to twice as large as the latter, for any m
simulated. These results demonstrate that our strategy in-
deed gives rise to a significantly larger system than any
prior scheme which identifies solely complete subcubes,
suggesting the potential advantage of reconfiguring a faulty
hypercube into a maximum incomplete one.

The average time spent for each involved node in carry-
ing out the proposed reconfiguration algorithm is depicted
in the same figure by dashed curves. Since only a SUN
workstation was assigned to the whole simulation, the role

Fig. 4. A four-dimensional hypercube with faults.
Fig. 5. Mean size and execution time versus number of faults, with
solid (or dashed) curves for mean size (or execution time).

CHEN AND TZENG: A BOOLEAN EXPRESSION-BASED APPROACH FOR MAXIMUM INCOMPLETE SUBCUBE IDENTIFICATION 1181

of every healthy cube node was simulated in sequence, and
the mean time was estimated by dividing the total time
taken to simulate all the healthy nodes over the number of
healthy nodes. This reveals the expected execution duration
of Algorithm A. For a larger m, it takes a longer mean du-
ration to finish the algorithm because more sumterms exist
in expression P initially (recall that a fault results in one
sumterm). To understand the worst case scenario, the larg-
est execution time at each node for every m was also re-
corded, so as to determine the maximum time among all
nodes for each m. For a given m, the maximum execution
time is often several times as large as the mean execution
time shown in Fig. 5. As an example, for m = 2, the maxi-
mum time is about triple the mean time, whereas for m = 10
or 20, the maximum time is roughly twice as large. The av-
erage time required for identifying largest complete sub-
cubes following the approach described in [10] (which is
the most efficient among all known techniques for complete
subcube determination) is provided in Fig. 5, as well. Iden-
tifying all maximum incomplete subcubes takes anywhere
from four- to nine-fold, as much as what is needed, for rec-
ognizing largest complete subcubes. Since reconfiguration
is performed infrequently (only after faults occur), the
longer time for reconfiguration into an incomplete system
appears to be well spent, in view of its potential perform-
ance gain.

In order to offer an insight into the distributions of vari-
ous sizes obtainable for a given number of faults in H10 un-
der the proposed reconfiguration strategy, the probabilities

of the sizes of identified maximum incomplete subcubes are
shown in Fig. 6, in which the cases of probabilities lower
than one percent are omitted. As can be seen from this fig-
ure, a larger number of faults makes it less likely to have a
big incomplete subcube in existence. For example, when m
equals three, the probability of finding a subcube with more
than 900 nodes in H10 is 49 percent, whereas, for m = 5, that
probability drops to less than two percent. If m is 20, the
probability of getting a subcube with size 400 or larger is
below 10 percent.

8 CONCLUDING REMARKS

A Boolean expression-based approach for identifying all
maximum incomplete subcubes present in a faulty hyper-
cube has been introduced. Every fault-free node is required
to participate in the identification process by executing the
same algorithm independently at the same time. The nodes
responsible for sending the addresses of maximum incom-
plete subcubes to the host, after their size is determined in a
distributed manner, are then elected through a distributed
procedure. The host is ensured to receive the addresses of
all maximum incomplete subcubes nonredundantly.

Extensive fault simulation indicates that, for a given
faulty pattern, our proposed identification approach leads
to approximately two times as large as the size obtained by
an earlier scheme capable of recognizing only complete
subcubes. While a system reconfigured following the pro-
posed approach often does not contain all the healthy

Fig. 6. Probabilities of the sizes of identified maximum incomplete subcubes.

1182 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

nodes (in order to ensure the incomplete hypercube topol-
ogy), such a system enjoys essential properties like simple
routing and broadcasting [11], bounded traffic density over
links [12], [20] and efficient communication. If one intends
to preserve all the healthy nodes (without any reconfigura-
tion) after faults arise, complicated routing and broadcast-
ing procedures are normally needed, and a message routed
between a pair of nodes could encounter excessive commu-
nication delay. Further, allocating and executing jobs effi-
ciently in this situation appear to be more difficult than on
an incomplete hypercube.

Our discussion in this paper is limited to the cases where
only cube nodes could fail. However, this approach can be
extended to deal with the hypercube involving both node
and link failures. Since a link joins two nodes, the failure of
a link excludes one of the two end nodes, if they both are
healthy, with an excluded node treated as a faulty node in
calculating the reject regions. The excluded node is the one
(of the two end nodes) which yields a smaller reject region.
If any end node of a failed link is faulty, no additional node
is excluded because the effect of the failed link is consid-
ered by a faulty node to which the link connects. With reject
regions due to faulty nodes and links decided for a partici-
pating node, expression P can be obtained and Algorithm A
is followed to get the largest incomplete subcube(s), as de-
scribed in this paper. This distributed identification ap-
proach appears beneficial and practical for large hyper-
cubes operating in a gracefully degraded mode.

APPENDIX A
PROOF OF THEOREM 1

PROOF. It is easy to observe that the conjugate subcube of

I MW ,1a f is a complete subcube of size 2s-h . The mini-

mum cover subcube of I MW ,1a f is of dimension s, de-
noted by MC, and suppose that its minterm repre-
sentation is y y y yk1 2 L L a , where a = -n s and yk,

1 £ £k a , is Boolean variable bi or bi , 0 1£ £ -i n

(recall that the minterm for Hs involves n - s Boolean

variables). Since the conjugate subcube of I MW ,1a f is a
complete subcube of dimension s - h , its minterm
representation would be y y y z z z z1 2 1 2L L La n h ,

where zn n h, 1 £ £ , is Boolean variable bi or bi . The

conjugate subcube of I MW ,1a f is denoted by CS(1) in
order to relate it to the first run of “1” (note that, if

I MW ,1a f itself is a complete cube, it would have multiple
conjugate subcubes; however, CS(1) then refers to the
one which involves the conjugate subcube of Is

M).
Consider the following h ()s - 1 -dimensional sub-

cubes in MC: y y y z1 2 1L a n n h, £ £ . Each of these h

subcubes is contained entirely in I MW ,1a f , because it
shares no common node with CS(1), the conjugate
subcube, and if a node in MC does not belong to

CS(1), it must fall inside I MW ,1a f (according to the
definition of conjugate subcubes given in Section 2).

Thus, I MW ,1a f involves h ()s - 1 -dimensional subcubes.

We then show that none of other (s - 1)-dimensional

subcubes in MC is contained in I MW ,1a f . This is
achieved according to the next two facts about all the
other (s - 1)-dimensional subcubes in MC, denoted as
either y y y z1 2 1L a n n h, £ £ , or y y y x x1 2 L a , being a

Boolean variable nomem z zn n n hor 1 £ £n s . First,

each subcube y y y z1 2 L a n contains the conjugate sub-
cube, CS(1) (from its minterm representation) and,

therefore, does not fall completely inside I MW ,1a f . Sec-
ond, each subcube y y y x1 2 L a and CS(1) have a
nonempty common subcube y y y z z z x1 2 1 2L La h , and

it is, thus, not contained wholly in I MW ,1a f .
We then argue by contradiction that the union of

these h ()s - 1 -dimensional subcubes y y y z1 2 L a n , for

all 1 £ £n h , is equal to I MW ,1a f . Assume that there is

one node B in I MW ,1a f , but it is not contained in any of
these h subcubes. The minterm representation of
node B should be given by
y y y z z z w w w wp s1 2 1 2 1 2L L L La h h- , where wp,

1 £ £ -p s h , is a Boolean variable bi or bi (because
only the representation of y y y z z z1 2 1 2L La h denotes

nodes outside these h subcubes). It is obvious that
node B belongs to CS(1) (whose minterm representa-
tion is y y y z z z1 2 1 2L La h , a contradiction due to our

above assumption. �

ACKNOWLEDGMENTS

Hsing-Lung Chen’s research was supported by the National
Science Council of the Republic of China under Contracts
NSC81-0408-E011-511 and NSC83-0408-E011-011. Nian-Feng
Tzeng’s research was supported in part by the U.S. National
Science Foundation under Grants MIP-9201308 and CCR-
9300075 and by the State of Louisiana under Contract
LEQSF(1994-96)-RD-A-39. A preliminary version of this pa-
per was presented at the Eighth International Parallel Proc-
essing Symposium, April 1994.

REFERENCES

[1] C.L. Seitz, “The Cosmic Cube,” Comm. ACM, vol. 28, no. 1, pp. 22-
33, Jan. 1985.

[2] J.C. Peterson et al., “The Mark III Hypercube-Ensemble Concur-
rent Computer,” Proc. 1985 Int’l Conf. Parallel Processing, pp. 71-73,
Aug. 1985.

[3] Intel Corporation, iPSC/2 and iPSC/860 User’s Guide. Intel Corpo-
ration, June 1990.

[4] NCUBE Corporation, n-CUBE 2 Processor Manual. NCUBE Corpo-
ration, 1990.

[5] W.D. Hillis, The Connection Machine. Cambridge, Mass.: The MIT
Press, 1985.

[6] B. Becker and H.-U. Simon, “How Robust is the n-Cube?,” Proc.
IEEE 27th Symp. Foundations of Computer Science, pp. 283-291, Oct.
1986.

[7] F. Ozguner and C. Aykanat, “A Reconfiguration Algorithm for
Fault Tolerance in a Hypercube Multiprocessor,” Information Proc-
essing Letters, vol. 29, pp. 247-254, Nov. 1988.

CHEN AND TZENG: A BOOLEAN EXPRESSION-BASED APPROACH FOR MAXIMUM INCOMPLETE SUBCUBE IDENTIFICATION 1183

[8] M.A. Sridhar and C.S. Raghavendra, “On Finding Maximal Sub-
cubes in Residual Hypercubes,” Proc. Second IEEE Symp. Parallel
and Distributed Processing, pp. 870-873, Dec. 1990.

[9] S. Latifi, “Distributed Subcube Identification Algorithms for Reli-
able Hypercubes,” Information Processing Letters, vol. 38, pp. 315-
321, June 1991.

[10] H.-L. Chen and N.-F. Tzeng, “Quick Determination of Subcubes
in a Faulty Hypercube,” Proc. 21st Int’l Conf. Parallel Processing,
vol. III, pp. 338-345, Aug. 1992.

[11] H.P. Katseff, “Incomplete Hypercubes,” IEEE Trans. Computers,
vol. 37, no. 5, pp. 604-608, May 1988.

[12] N.-F. Tzeng and H. Kumar, “Analysis of Link Traffic in Incom-
plete Hypercubes,” Proc. Fifth IEEE Symp. Parallel and Distributed
Processing, pp. 312-319, Dec. 1993.

[13] H. Sullivan and T.R. Bashkow, “A Large Scale Homogeneous,
Fully Distributed Parallel Machine, vol. I,” Proc. Fourth Symp.
Computer Architecture, pp. 105-117, Mar. 1977.

[14] J.R. Armstrong and F.G. Gray, “Fault Diagnosis in a Boolean n-
Cube Array of Microprocessors,” IEEE Trans. Computers, vol. 30,
no. 8, pp. 587-590, Aug. 1981.

[15] J.M. Gordon and Q.F. Stout, “Hypercube Message Routing in the
Presence of Faults,” Proc. Third Conf. Hypercube Concurrent Com-
puters and Applications, vol. I, pp. 318-327, Jan. 1988.

[16] M.-S. Chen and K.G. Shin, “Adaptive Fault-Tolerant Routing in
Hypercube Multicomputers,” IEEE Trans. Computers, vol. 39, no. 12,
pp. 1,406-1,416, Dec. 1990.

[17] P. Ramanathan and K.G. Shin, “Reliable Broadcast in Hypercube
Multicomputers,” IEEE Trans. Computers, vol. 37, no. 12, pp. 1,654-
1,657, Dec. 1988.

[18] L.M. Ni and P.K. McKinley, “A Survey of Wormhole Routing
Techniques in Direct Networks,” Computer, vol. 26, no. 2, pp. 62-
76, Feb. 1993.

[19] G. Lin and N.-F. Tzeng, “Effective Utilization of Hypercubes in
the Presence of Faults,” J. Parallel and Distributed Computing, vol. 32,
pp. 223-231, Feb. 1996.

[20] N.-F. Tzeng and H. Kumar, “Traffic Analysis and Simulation
Performance of Incomplete Hypercubes,” IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 7, pp. 740-754, July 1996.

[21] H.-L. Chen and N.-F. Tzeng, “Subcube Determination in Faulty
Hypercubes,” IEEE Trans. Computers, vol. 46, no. 8, pp. 871-879,
Aug. 1997.

[22] N.-F. Tzeng and G. Lin, “Efficient Determination of Maximum
Incomplete Subcubes in Hypercubes with Faults,” IEEE Trans.
Computers, vol. 45, no. 11, pp. 1,303-1,308, Nov. 1996.

Hsing-Lung Chen (S ’79-M ‘88) received the BS
and MS degrees in computer science from Na-
tional Chiao Tung University, Taiwan, in 1978
and 1980, respectively, and the PhD degree in
electrical and computer engineering from the
Illinois Institute of Technology, Chicago, in 1987.

From 1987-1989, he was an assistant pro-
fessor in the Department of Mathematics and
Computer Science at Clarkson University,
Potsdam, New York. In 1989, he joined the De-
partment of Electronic Engineering at the Taiwan

Institute of Technology, Taipei, Taiwan, where he is currently a profes-
sor. His research interests include parallel processing, distributed
computing, and database systems.

Dr. Chen is a member of the ACM and the IEEE.

Nian-Feng Tzeng (S ‘85-M ‘86-SM ‘92) received
the BS degree in computer science from Na-
tional Chiao Tung University, Taiwan, the MS
degree in electrical engineering from National
Taiwan University, Taiwan, and the PhD degree
in computer science from the University of Illinois
at Urbana-Champaign in 1978, 1980, and 1986,
respectively.

He has been with the Center for Advanced
Computer Studies at the University of South-
western Louisiana (USL), Lafayette, since 1987.

From 1986-1987, he was a member of the technical staff, AT&T Bell
Laboratories, Columbus, Ohio. He is on the editorial board of IEEE
Transactions on Computers, has served on program committees of
several conferences, and is a distinguished visitor of the IEEE Com-
puter Society. He was co-guest editor of a special issue of the Journal
of Parallel and Distributed Computing on distributed shared memory
systems, 1995, and the newsletter editor of the IEEE Technical Com-
mittee on Distributed Processing. His research interests include paral-
lel and distributed processing, high-performance computer systems,
high-speed networking, and fault-tolerant computing.

Dr. Tzeng is a member of Tau Beta Pi, a member of the ACM, a
senior member of the IEEE, and the recipient of the outstanding paper
award of the 10th International Conference on Distributed Computing
Systems, 1990. He received the USL Foundation Distinguished Pro-
fessor Award in 1997.

