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Abstract—In multicore systems, a large portion of checkpoint time overhead can be hidden from the execution critical path by resorting

to a dedicated checkpointing thread run concurrently with regular execution threads for compressing checkpoint files to lower

checkpointing overhead. On the other hand, the restore time is on the critical path that cannot be hidden, making it most important to

accelerate execution restore upon failures. This work pursues a restore-express (REX) strategy for multi-level checkpointing (MLC),

applicable to any incremental checkpointing (IC). Oblivious to application codes, REX employs adaptive IC (AIC) for local (L1)

checkpointing and follows our runtime control for second-level (L2) checkpointing, with its aim at express restore from failures while

holding down the overall execution time. It takes advantage of two unique insights for overhead reduction: (1) the modified pages of an

incremental checkpoint file are likely to exist in a subsequent checkpoint file, and (2) many data patterns (on an average, some 40

percent of them) stay unchanged from one L2 checkpoint file to the next. These insights enable REX to (1) coalesce IC files (by

involving only the last copy of every dirty page among files) and (2) boost file compression across multiple L2 checkpoints. Time and

storage overhead results of REX during normal job execution are gathered for 16 benchmarks from SPEC, PARSEC, and NPB suites.

The evaluation outcomes of the execution restore time confirm that REX is fast and able to quicken restore by a factor of 4.5� when

compared with its IC counterpart (without utilizing the unique insights), while incurring same execution time overhead.

Index Terms—Compression and deduplication, execution restore, hash functions, incremental checkpointing, multi-level checkpointing

Ç

1 INTRODUCTION

CHECKPOINTING permits job execution recovery from
failures, by recording the execution state of a running

job. It typically requires suspending job execution in order
to take the execution state, involving time overhead. Check-
point files are kept in storage for later recovery use when
needed, and they involve storage overhead. Overhead in
time and storage due to checkpointing depends largely on
the checkpoint file sizes and the checkpoint frequency,
which should be kept as low as possible.

Full checkpointing (FC) takes the complete memory foot-
print, typically involving high overhead in time and storage
but permitting simple job execution restore via the latest FC
file. Incremental checkpointing (IC) [7], [8], on the other
hand, is commonly adopted to reduce the checkpoint data
volume, by saving only modified and new (due to dynamic
allocation) memory pages into the checkpoint. Furthermore,
IC with an adaptive checkpoint frequency has been pursued
for data volume reduction. It can be achieved by determin-
ing appropriate points of checkpointing time through cost

prediction on-the-fly [8], [9], omitting certain durations
without checkpointing (based on the expected recovery
time) [10], or embracing varied block boundaries optimally
(instead of fixed page boundaries) [11]. Recent adaptive IC
(AIC) relies on effectively predicting the execution state
similarity degree to determine the enticing points of time to
take checkpoints, arriving at smallest possible checkpoint
files [12].

A networked system may keep checkpoint files not only
in local storage but also in remote shared storage to ensure
acceptable reliability for long-running jobs, called multi-
level checkpointing (MLC) [3], [4]. With local (L1) check-
pointing and remote (say, L2) checkpointing, MLC is neces-
sary in order to tolerate various failure/unavailability
types, including ones that render local storage unavailable.
MLC is relatively expensive due to involving data transfer
(over the network) and data writes (to remote storage) for
L2 checkpointing, desiring checkpoint data volume reduc-
tion. To contain overhead and avoid bottlenecks, MLC usu-
ally keeps all checkpoint files in (less expensive) local
storage while sending only a few checkpoints to (shared
and resilient) remote storage.

Execution state restore from failures is on the critical
path, making it utterly important to shorten the restore
time. To this end, we address restore-express (REX) check-
pointing for MLC, with its L1 checkpointing following AIC
[12] and its L2 checkpointing governed by our runtime con-
trol which aims at express restore from failures while hold-
ing down the overall execution time. Typically, a few L1
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checkpoints are taken before conducting one L2 checkpoint-
ing at the desirable time point. Hence, L2 inter-checkpoint-
ing intervals vary. REX achieves exceeding overhead
reduction by (1) coalescing batches of IC files before check-
pointing them in L2 storage and (2) deduplicating data pat-
terns both within each L2 checkpoint and across multiple
L2 checkpoints, accelerating restore from failures. File coa-
lescence combines a sequence of IC files in each batch by
skipping repetitive dirty pages present in previous files,
retaining only the last copies. Coalescence effectiveness
stems from our first insight, demonstrated in Fig. 1. From
the figure, the majority of pages in the kth IC file, for k � 3,
are seen to exist also in prior IC files for various benchmarks
from PARSEC [20], SPEC CPU2006 [19], and NAS Parallel
Benchmarking [18] suites (which are detailed in Table 2 of
Section 5.2). As a result, REX lowers L2 checkpointing over-
head effectively via coalescing IC files in every batch of L2
checkpoints, to arrive at one coalesced L2 checkpoint file
(called an L2 checkpoint file for short). This insight also
makes it possible for REX to quicken execution restore from
transient failures using checkpoint files kept in L1 storage.

In addition, REX employs page-aware deduplication,
which compresses pages independently using common
data patterns recorded not only within a given coalesced L2
checkpoint file but also across multiple L2 checkpoint files
to significantly reduce the checkpoint data volume, with a
fixed pattern length (say, 32 bytes). This is made possible by
leveraging the second unique insight of L2 checkpoint files,
as shown in Fig. 2. According to the figure, modified pages,
on an average, have some 40 percent of their data patterns
(sized with 32 bytes) identical to those of corresponding
pages in the prior L2 checkpoint file, under various bench-
marks. Reducing checkpoint data volume shortens file read
and transfer times from L2 (or L1, if available) storage for
faster restore, besides lowering file transfer times to L2 stor-
age when taking checkpoints.

REX is the very first MLC that checkpoints IC files to L2
storage, instead of FC (full checkpoint) files like the only
earlier known MLC with IC [38]. Under the multicore sys-
tem, REX incurs negligible execution time overhead by uti-
lizing a dedicated thread to handle L2 checkpointing
activities. In fact, for our testbed (detailed in Section 6) with
mean time between failure (MTBF) of 10,000 seconds, REX
exhibits the average execution slowdown, according to
Fig. 11, by less than 3.0 percent (or by < 2.5 percent) under
four cores (or eight cores) per node when compared with
execution without checkpointing and without failures at all.
Note that REX is to have a shorter overall exection time
than its counterpart without any checkpointing, if failures
exist during execution.

The contribution of this paper is four-fold: (1) it is the very
first MLC that checkpoints IC files to L2 storage; (2) it pro-
poses a strategy of coalescing incremental checkpoint files to
minimize the overall execution time; (3) it introduces a page-
aware compression technique that permits decompressing
pages independently; (4) it implements and evaluates REX
extensively using three benchmark suites. Evaluation results
demonstrate that REX accelerates the mean restore time by a
factor of 4.5�, when compared with its earlier counterpart
(i.e., a typical IC). In addition, REX enjoys 4.1� faster in
restore than the recently pursued mechanism of Libhash
[33]. Aggregative coalescence and effective deduplication
make REX especially attractive for jobs with large memory
footprints.

The rest of the paper is organized as follows. Section 2
provides background, and the proposed REX design is out-
lined in Section 3. Section 4 extracts the L2 checkpointing
characteristics, while Section 5 unveils our evaluation meth-
odology, and Section 6 presents simulation results and dis-
cussion. Related work is presented in Section 7, with
conclusion given in Section 8.

2 BACKGROUND AND MOTIVATION

2.1 Checkpointing

Various checkpointing mechanisms have been proposed to
reduce storage and time overheads associated with check-
pointing [6], [7], [8], [10], [28], [39]. To this end, incremental
checkpointing (IC) has been commonly adopted [7], [8], [11],
[12], [30], [33] for overhead reduction, by saving only modi-
fied and new memory pages into the checkpoint files. As a
quantitative evidence, we measured the normalized IC size
ratio (i.e., the IC file size divided by the full checkpoint (FC)
file size) of various benchmarks under AIC [12] for single
level (L1) storage, depicted in Fig. 3. The IC size ratio

Fig. 1. Percentage of pages in jth incremental checkpoint file (obtained by AIC [12]) that had been modified in any prior (ith, with i < j) checkpoint
under various benchmarks. (For example, the 4th IC of BZ has > 80 percent of its pages existing in prior IC files).

Fig. 2. Percentage of data patterns in a modified page at the jth L2
checkpoint file repeated in the corresponding page at the ðjþ 1Þth L2
checkpoint files under various benchmarks, for L2 inter-checkpointing
batch with 2 (ICB ¼ 2) and 4 (ICB ¼ 4) IC files.
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distribution for each benchmark is also shown inside its cor-
responding bar. Four (SP, BS, FE, and CG) out of sixteen
benchmarks demonstrate their mean IC sizes to stay below
7 percent (of their FC counterpart sizes). Five benchmarks
(BZ, MI, FD, FT, and UA) have high (>25 percent) variances
(defined as the standard deviation divided by the mean), as
can be seen in Fig. 3. On an average, incremental checkpoint-
ing cuts the checkpoint data volume by some 45 percent, as
shown by the rightmost bar in the figure, with its IC size ratio
varying by about 12 percent. This work further explores
incremental checkpointing under MLC, besides its shown
checkpoint size reduction under single level storage.

2.2 Compression and Deduplication

Compression typically refers to data size reduction within one
file (e.g., the compression library of bzip2 [21]), whereas dedu-
plication refers to size reduction over multiple files (e.g.,
Xdelta3 [14]). A freely available and high-quality data com-
pressor based on a block-sorting lossless compression algo-
rithm developed earlier, bzip2 is popularly applied to
compress files [21]. On the other hand, Xdelta3 [14] is a delta
compressor that hashes a block of source data and uses the
hash table to identify its longest match to the set of target data,
originally based on Rsync algorithm [17]. This article uses the
terms of compression and deduplication interchangeably.

2.3 Execution State Restore

In general, the latency of execution state restore underMLC is
contributed by (1) checkpoint file reads from L1/L2 storage,
(2) file transfer over the network to a substitute node (where
execution resumes therein), and (3) decompressing the check-
point file(s), if they are stored in a compressed form.With FC,
job execution can be restored from failures simply by the latest
checkpoint in either the first level (L1) storage, if accessible, or
high level (say, L2) storage. Under IC (incremental check-
pointing), however, execution restore typically involves all
incremental checkpoint files plus the first full checkpoint.
Hence, the one (and only one) MLC with IC [38] pursued so
far kept its incremental checkpoints only in L1 storage while
holding full checkpoints (FCs) in L2 storage. In contrast, this
work pursues IC underMLC effectively by keeping coalesced
and compressed IC files in L2 storage.

3 REX CHECKPOINTING DESIGN

REX employs AIC [12] for L1 checkpointing which supports
incremental checkpointing via the Unix mprotect() system
call for collecting the list of dirty pages during each

checkpoint interval. Themprotect() system call lets a program
set its memory page protection from writing. If the program
attempts tomodify such a page, the page-fault signal is raised
and caught by the signal handler. At the beginning of each
checkpoint interval, AIC write-protects target pages in entire
process address space. Each first writing attempt to a pro-
tected page (1) triggers the signal handler to add the page to
the dirty page list and (2) unprotects the page. AIC kernel
module then uses this dirty page list to write the modified
pages into the L1 checkpoint. Following a set of L1 check-
points, REX takes an L2 checkpointing, with its aim at express
restore from failures and the overall execution time near the
lowest possible. Oblivious to application codes, REX takes
advantage of two unique insights we have observed for
reducing time and storage overhead: (1) the modified pages
of an incremental checkpoint file are likely to exist in a subse-
quent checkpoint file, and (2) many data patterns (on an aver-
age, some 40 percent of them) stay unchanged from one L2
checkpoint file to the next. These insights permit REX to (1)
coalesce IC files (by involving only the last copy of every dirty
page among files) and (2) achieve superior deduplication for
data patterns not only within the current coalesced L2 check-
point file but also across earlier L2 checkpoint files. Employ-
ing fixed data pattern length (say, 32 bytes) to reduce
checkpoint data volume, REX shortens the times of data reads
(from storage) and data transfer (to the target nodewhere exe-
cution resumes therein) after failures occur to achieve express
execution state recovery.

3.1 REX Operational Overview

Implemented on top of AIC, REX performs a full checkpoint
(FC) in its very first checkpointing. Such an FC file, after
deduplication, is saved into both (L1 and L2) storages. REX
then takes incremental checkpoints (ICs) several times
locally to produce a batch of IC files before taking one L2
checkpointing, governed by our runtime control. To lower
the L2 checkpoint data volume, the batch of IC files (say,
ICi1; ICi2; . . . ; ICij in Fig. 4) is coalesced and then dedupli-
cated before transferred to L2 storage.

As shown in Fig. 4, REX stores the IC files of every batch,
say Batch i, in local (L1) storage until they are replaced by one

Fig. 3. IC file size ratio, normalized with respective to the corresponding
FC size, for various benchmarks.

Fig. 4. REX coalescence and page-aware deduplication, with each Di

denoting a coalesced and deduplicated version obtained from the ith
batch of incremental checkpointing (IC) files, termed ICi1; ICi2; . . . ; ICij.
(For clarity, only the details of Batch i are shown inside the bold box).
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coalesced page-aware deduplicated version (denoted by Di).
The coalesced and deduplicated version of Batch i is then
kept in L2 storage as an L2 checkpoint. If a failure occurs, REX
restores job execution from its checkpoints either from multi-
ple D’s kept in L2 storage (for a permanent failure) or from
multipleD’s and IC files kept in L1 storage (for a transient fail-
ure). To achieve page-aware compression, REX deduplication
module employs the fixed sized block (say, 32 bytes) mapped
into a 4-byte pointer (instead of 16-to-20 bytes fingerprints
[33]). By exploiting the second insight (see Fig. 2), REX thus
reduces the checkpoint data volume significantly. After a fail-
ure happens, REX, being page-aware, utilizes mapping
pointers associated with each involved page to restore the job
expressly.

Here, L2 storage is assumed to be failure-free. A failure is
either transient (recoverable locally from the latest L1 check-
point(s)) or permanent (to result in total node failures).
After a permanent failure, the application running on a
failed node needs to restart on a substitute node, making
use of the latest L2 checkpoint(s).

3.2 REX Coalescence and Deduplication

L2 checkpointing involves two major components: Page
Coalescer (PC) and Deduplication Unit (DU), as illustrated
in Figs. 5a and 5b, respectively. For each batch of incremen-
tal checkpoints (Ci

0s), DU produces PF (Pointer File), DRPS
(Reference Pattern Sequence) File, and P-Table for replacing
original Ci

0s in L1 storage and checkpointing in L2 storage
as well, to realize MLC. It should be noted that the REX
deduplication process during a job execution involves local
storage only, and that it updates the remote storage using
related files only at the end of deduplication.

3.2.1 Page Coalescer (PC)

PC gathers the distinct pages from a batch of n IC files,
by skipping repeated pages in earlier checkpoints via

examining the header of every IC file, as depicted in Fig. 5a.
It drops repeated pages in earlier IC files without processing
them and collects all distinct pages to constitute the coa-
lesced list, called C-List, as shown in Fig. 5a. There are only
8 distinct pages in C-List, out of 15 involved in the batch
of three IC files. Each list entry registers three attributes:
(1) the page number, i.e., page#, (2) the IC file ID, i.e., chk#,
and (3) offset position where that page is resided in the IC
file, i.e., page position (or pp for short).

3.2.2 Deduplication Unit (DU)

Once PC creates a complete C-List, DU starts effective dedu-
plication by breaking the page contents into fixed-size data
blocks (also called patterns in this paper), and all distinct
blocks are kept in RPS File, to which the data blocks of any
page (say, 4K bytes) are pointed, as shown in Fig. 5b. DU
deduplicates every page by examining its contents one
block after another, with each block replaced by the pointer
which denotes the position where the examined block is
located in RPS File. The page, after its deduplication, is
denoted by a collection of a ð¼ 4Kbytes / data block size, in
bytes) pointers. Accordingly, a checkpoint file with P pages
is represented by ðP � aÞ pointers, which constitute PF (i.e.,
Pointer File) for the checkpoint.

DU employs P-Table (i.e., Page-Table) to record all
involved pages. Each page recorded in P-Table consists of
two fields, as shown in Fig. 5b: (1) page number, i.e., Page#,
and (2) PF pointer to denote the start position of a consecu-
tive reference pointers resident in Pointer File, i.e., PF�. The
need of PF pointers is to accommodate new pages that can
be created dynamically during job execution. The page
number and PF pointer are distinct and fixed throughout
the page-aware deduplication process.

3.2.3 Deduplication Implementation

DU hashes every page number existing in C-List via a hash
function h to produce an index for one access to P-Table. A

Fig. 5. Coalescence and dedpulicaton of a batch of incremental checkpoint files under REX.u Page Coalescer (PC) processes the header of a batch
of checkpoint files and generates the coalesced list (known as C-List) of the distinct pages in (a). Maintaining a list of involved pages and their bound-
aries through a page table (P-Table), Deduplication Unit (DU) becomes page-aware (b). v Being page-aware, DU takes a page number from C-list
and searches a matching page in P-table using hash. w For a matched page, DU reads out a pointers from Pointer File (PF), starting at index PF�

and x dereferences them from existing Reference Pattern Sequence (RPS) File. y With the help of hash engine, the dereferenced a patterns (i.e.,
prior version of page contents) are inserted into the De-duplication table (DeD-Table), and z the new page contents is loaded for deduplication. {
Unique pattern, x, enters the DeD-Table and D RPS File at location k, | while the corresponding pointer in PF is updated with k. At the end of each
batch, REX produces PF, D RPS File, and P-Table, which then replaces original IC files in L1 storage and are also transferred to L2 storage for multi-
level checkpointing (MLC).
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distinct page number enters P-Table to establish a new
entry, and the contents of the page are fetched for dedupli-
cation (as shown by the dashed arc in Fig. 5), one data pat-
tern after another against those recorded in DeD-Table. A
data pattern (say, x) is taken by Hash Engine (HE) to pro-
duce an index (say, h(x)) for accesses to DeD-Table, where h
(x) is obtained by “hash(x) mod jDeD-Table j ”, with jDeD-
Table j equal to the number of entries in DeD-Table and
hash(x) being CRC-32. At the start of every coalesced batch,
the contents of P-Table are inherent from the immediately
previous batch, as P-Table records those dirty pages
encountered so far, starting from the very first coalesced
batch during job execution. In contrast, DeD-Table starts
from scratch at the beginning of every deduplication batch.

For every matching page recorded in P-Table, DU first
de-references a patterns pointers recorded in PF, starting at
the location pointed by PF� of the same P-Table entry. Each
pointer in PF references a data pattern in RPS File. The de-
referenced a data patterns are the previous contents of the
matched dirty page (in last coalescence batch of IC files), to
be used for deduplicating current contents of the page at
hand. For example, deduplicating Page 2 (i.e., the first entry
of C-List) which also exists in P-Table, DU de-references a

pointers from PF, starting at the index specified by PF� (i.e.,
32), populates them in DeD-Table, as shown in Fig. 5b.

The duplicate data patterns are filtered out by DeD-
Table. Each data pattern, say x, of a checkpoint file under
deduplication, is probed against a candidate set in DeD-
Table (indexed by h(x)) to see if it exists therein. If x does
not exist, it is recorded in DeD-Table. In this case, the RPS�

of the newly recorded entry denotes the position of x in D
RPS File (say, k). If x exists, it is not to enter D RPS File, but
the pointer of its matched entry is updated into Pointer File.
For table utilization enhancement, DeD-Table follows a var-
iant of Cuckoo hash [24] with two hash functions and 2-way
set-associativity to manage its entries (not shown in Figure).
After exhausting every pattern of all pages existing in C-
List through the deduplication process, resulting PF
(Pointer File), P-Table, and D RPS File denote a compressed
version of the batch of IC files originally kept in L1 storage,
and they replace those IC files therein. Additionally, the
compressed version of the batch of IC files is sent to remote
persistent storage for L2 checkpointing.

3.3 Execution State Restore

Execution state restore from failures takes two different
paths, depending on the type of failures. For a permanent
failure, all D RPS Files including the very first full RPS plus
the most recent P-Table and PF are moved to the substitute

core, where the execution state is reconstructed before exe-
cution resumes therein, as depicted in Fig. 6. Decompress-
ing a page, which is recorded in a P-Table entry, is achieved
by dereferencing a consecutive mapping pointers (from PF)
that are located at the starting index specified by the PF�

field of the recorded P-Table entry. This process repeats for
every page existing in P-Table to complete execution state
restore. On the other hand, a transient failure calls for
restore locally, first by copying the page contents of all the
pages in coalesced page list, which is obtained from L1
checkpoint files produced after the last L2 checkpoint and
kept in local storage. In addition, those pages in the applica-
tion memory footprint (recorded in P-Table) but are not
present in the coalesced list, are reconstructed using the P-
Table, PF, D RPS and a full RPS File as shown in Fig. 6. With-
out complex computation, REX has fast decompression,
resulting in express restore.

3.4 Placement of Complete Coalescence

The remote checkpointing cost under incremental L2 check-
pointing (i.e., batched coalescence, which works on a batch of
ICs and generates D RPS File) is less than that of full L2
checkpointing (i.e., complete coalescence, which coalesces all
ICs including the very first full checkpoint and deduplicates
them to obtain a full RPS File, letting all prior checkpoint
files discarded); however, the additional restore cost
incurred by each D RPS File may negate all potential gains if
the total number of D RPS Files exceeds a limit. Given that
restoring to the latest execution state requires an early full
RPS File plus all D RPS Files generated after the early file.
Considering the checkpointing cost and the restart cost
associated with each D RPS and full RPS File, REX keeps an
L2 checkpoint in the form of full RPS (rather than D RPS),
whenever the overall cost under D RPS is found to exceed
that under full RPS.

Fig. 7 shows two different L2 checkpointing sequences
(each of which involves nþ 1 intervals of L2 checkpointing):
(a) very first full RPS followed by n D RPS and then a full
RPS, and (b) very first full RPS followed by (nþ 1Þ D RPS.
Let the mean checkpointing cost and the restore cost associ-
ated with a D RPS File be C and d, respectively, while those
of full RPS are C and g. Let the probability of system fail-
ures within the next L2 checkpoint interval be denoted by p.
Failures are assumed to occur randomly (following a Pois-
son distribution), with the mean time between failures
(MTBF) of M, as commonly adopted earlier [4], [27], [28].

The following analysis aims to determine optimal selec-
tion of the coalescence type (i.e., batched or complete) for
L2 checkpointing under REX. This selection process mini-
mizes the overall checkpointing cost such that total execu-
tion time overhead is kept as low as possible. From Fig. 7a,

Fig. 6. REX restoration using P-Table, RPS File, and PF to produce an
execution memory image.

Fig. 7. Sequence of L2 checkpointing scenario.
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if there is no failure before the next L2 checkpoin, the total
checkpointing overhead cost (up to taking the next L2
checkpoint) equals the sum of all checkpointing costs (i.e.,
Cþ n � CþCÞ. To simplify our derivation, failures during
L2 checkpointing are ignored, since they tend to affect
proper selection of a coalescence type (i.e., batched or com-
plete) negligibly. On the other hand, if a failure happens,
besides all checkpointing costs, a restore cost (g) is also
incurred due to restoring from a full RPS file that was just
taken (i.e., Cþ n � CþCþ gÞ: Thus, the expected overhead
cost under a failure (with probability p) within the next L2
interval is given by

1� pð Þ 2 �Cþ n � Cð Þ þ p � 2 �Cþ n � Cþ gð Þ: (1)

Similarly, for Sequence (b) of Fig. 7, the expected over-
head cost equals

1� pð Þ Cþ nþ 1ð ÞCð Þ þ p � Cþ nþ 1ð ÞCþ g þ nþ 1ð Þdð Þ:
(2)

The invocation of a full RPS L2 checkpoint will minimize
the overall cost, if Eq. (1) � Eq. (2), namely,

ð1� pÞð2 �Cþ n � CÞ þ p � ð2 �Cþ n � Cþ gÞ
� ð1� pÞðCþ ðnþ 1ÞCÞþpðC
þ ðnþ 1ÞCþ g þ ðnþ 1ÞdÞ:

(3)

After algebraic manipulation, Eq. (3) gives rise to

n � C� C

p � d � 1:

With MTBF of M and the L2 inter-checkpoint interval of
T, the value of p is given by 1- exp(-T/M) [28], [29]. Hence,
by measuring C, C, d, and T for the system, REX optimally
selects a coalescence type (i.e., batched or complete) for L2
checkpointing to minimize the overall execution time. The
simulated results under different values of these parameters
are presented in Sections 4 and 6.

3.5 REX Failure Model and Assumptions

Job execution with REX concurrent checkpointing involves
a sequence of repeated events, as shown in Fig. 8a. The job
is executed for wi;j seconds, followed by low-cost execution
state checkpointing (i.e., taking an execution snapshot when
job execution is halted and keeping the snapshot in local
disk) for “bi;j” seconds, during the i batch of events. This
execution halt duration bi;j is typically small (i.e., bi;j 	 the
inter-IC interval of “wi;j”), as Page-cache hides the disk
write latency [22] (see, Fig. 16) that makes snapshot taking
fast (via memory copies). Job execution then resumes. REX
takes IC several times locally (to produce a batch of IC files
kept in L1 storage) before initiating a dedicated checkpoint-
ing thread to take one remote checkpointing to persistent L2
storage with the checkpointing cost of C (orCÞ under
batched (or complete) coaleesence, as depicted in Fig. 8a,
where the L2 checkpoint interval ðT iÞ of the i batch of
events equals T i ¼ Sjðwi;j þ bi;jÞ.

Failures are assumed to occur randomly (following a
Poisson distribution) with the MTBF of M. Two types of fail-
ures with known probabilities exist: transient and perma-
nent failures. The former refers to ones that are not
persistent and their involved compute cores may resume
execution successfully after restore, whereas the latter refers
to ones that render involved compute cores wholely
unavailable. With 2-level MLC, execution can be restored
from L1 checkpoints after transient failures. On the other
hand, a permanent failure resorts to an L2 checkpoint and a
substitute core for recovery.

3.5.1 Control of L2 Checkpointing

Recent articles [36], [37], [40] had pursued an L2 checkpoint-
ing analysis. However, REX cannot be analyzed in a similar
way due to its four specific features, prompting the develop-
ment of our REX analysis. First, L1 checkpointing under REX
is adaptive (based on AIC), instead of being periodic with a
fixed interval assumed in all earlier analyses. Secondly, the
checkpointing cost (reflected by the checkpoint data volume
size) is not a constant (see Fig. 3). Thirdly, REX employs a
separate (dedicated) thread for handling L2 checkpointing
(run concurrently with regular execution threads) to lower
the job execution time penalty caused by checkpointing,

Fig. 8. Execution timing of MLC under REX, where (a) execution snapshot (“bi;j”) contributes to execution time penalty while remote checkpointing
(“Ci or Ci”) are handled by a separate thread run concurrently during job execution (“wi;j”), and (b) rework overhead and restore times after failures
are shown.
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instead of pausing execution threads for L2 checkpointing.
Finally, our REX operates under incremental checkpoints,
while all previous studies consider only full checkpoints.

With REX, the overall execution time of an application is
determined by three factors (1) bi;j and wi;j (2) "i;j plus
rework after a transient failure, and (3) Ci or Cii and Ri plus
rework after a permanent failure, where "i;j and Ri refer
respectively to the mean local restore time and the mean
remote restore time, as illustrated in Figs. 8a and 8b. Mean
rework after a transient (or permanent) failure is dictated
by wi;j (or T i). Among the three time-determinant factors,
only the last one is affected by L2 checkpointing control,
because the sequence of L1 checkpoints is determined by
AIC and "i;j is related to bi;j (which is dictated by the num-
ber of dirty and new pages since the last L1 checkpoint). If
L2 checkpointing time for Batch i of L1 checkpoints (Ti) is
longer, mean rework after a permanent failure is larger, in
favor of reducing Ti (with more frequent L2 checkpointing).
On the other hand, the mean remote restore time Ri

depends on the aggregate size of all L2 checkpointing files
prior to the latest complete coalesce (i.e., full RPS), with the
size dictated by the volumes of L1 checkpointing files
involved and their compression ratios (CRs, whose details
are given in Section 6.4.2) in those prior L2 checkpoints, as
shown in Fig. 8b. This is because restore under incremental
checkpointing involves k L2 checkpoint, for all k < i. The
most desirable time point for taking L2 checkpointing exists,
and it can be approximately estimated in runtime.

4 L2 CHECKPOINTING CHARACTERISTICS

For express restore while containing the overall execution
time, we have conducted extensive event-driven simulation
to gather the mean execution time of a long-execution job.
The system under our simulation follows AIC [12] to pro-
duce L1 checkpoints, whose inter-checkpointing intervals
are not fixed and observed to exhibit the coefficient of vari-
ance (defined as standard deviation divided by jmean j )
equal to 0.12. For example, with mean equals 120, L1 inter-
checkpointing intervals (for one standard deviation) range
from 105:6 ð¼ 120� 0:88Þ to 134:4 ð¼ 120� 1:12Þ. Addition-
ally, the simulated system has event parameters (see Fig. 8)
as follows: the latency for taking a very first snapshot (L1
checkpoint time) of b0;0 ¼ 2:0, the mean L1 restore cost (from
a full checkpoint) of "0;0 ¼ 20, and the mean L2 checkpoint
time and restore time (with full RPS File) of Ci ¼ 60 and
g ¼ 30, respectively; while under D RPS File, L2 checkpoint
time and restore time are dictated by the IC file sizes and
CRs (compression ratios). Additionally, the system has a
mean time between failure of M ¼ 10,000 sec., with

permanent failures accounting for 16 percent of all failures
(as stated in an earlier study [3]). Recall that a permanent fail-
ure is recovered from the most recent L2 checkpoint, plus
every prior L2 checkpoints (if any), since restore under any
incremental checkpointing involves all prior checkpoints.

As depicted in Fig. 9, the normalized execution time ratio
(z) versus the L2 inter-checkpoint interval (in terms of the
number of the mean L1 checkpoint interval) is governed by a
convex curve, where z refers to the execution time normal-
ized with respect to that without checkpointing and without
failures. Every z value shown in the figure is averaged over
10,000 event-driven simulation runs. The system is evaluated
under four parameters (i.e., IC size versus full checkpoint
size, CR, the core count per node involved in execution, and
network bandwidth available for a node), which vary one at
a time, with other three parameters held at default values.
The default values of IC size versus full checkpoint size, CR,
core count, and BW are 1/2, 2, 4, and 1, respectively. A large
checkpoint volume refers to any application whose IC file
sizes are comparable to its full memory footprint, with lim-
ited file compression (i.e., to exhibit low CRs). In contrast, a
small checkpoint volume may result from applications with
either relatively small IC files or high compression. It is
found from Fig. 9 that z is higher for a larger checkpoint vol-
ume, since checkpointing (or restore) time overhead is dic-
tated by the volume involved in checkpointing file writes to
storage (or the file reads from storage plus data transfer).

As shown in Fig. 9a, z is minimum for the L2 inter-check-
point interval near 4 (or 8) under the large IC size (or the
small IC size). As shown in Fig. 9a. Having a smaller IC size
and thus, a reduced L1 inter-checkpoint interval, REX waits
for more L1 checkpoints before placing an expensive L2
checkpoint to lower the overall execution time. Similarly,
Fig. 9b depicts that the desirable L2 inter-checkpoint inter-
val reduces from 7 to 4 when CR rises from 1 to 8. Shrinking
the checkpoint data volume, a higher CR lowers the L2
checkpointing cost, thus shortening the L2 interval to have
a smaller rework time after a failure. Additionally, under
the multicore system, REX employs a dedicated L2 check-
pointing thread, which shares the available core(s) with reg-
ular execution thread(s), thus incurring a slight slowdown
in job execution. The execution slowdown caused by L2
checkpointing is lightened as the number of cores grows.
As a result, the preferred L2 inter-checkpointing interval
drops from 13 (L1 checkpoints) to 5 when the number of
cores grows from 1 to 8, as shown in Fig. 9c. Here, the total
number of executing threads is assumed to equal the avail-
able cores. Furthermore, the impact of network bandwidth
sharing between execution nodes and remote storage is

Fig. 9. Normalized execution time ratio (z) versus L2 inter-checkpoint intervals (in terms of the number of mean L1 checkpoint interval) of a long run-
ning job, where (a) denotes z for four IC amounts, with the other 3 parameters (CR, core count, and BW) held at fixed, default values. Similarly, (b)
denotes z for four CR amounts, with the other 3 parameters held at fixed values, whereas (c) and (d) denote z for four core count amounts and four
BW amounts, respectively.
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shown in Fig. 9d. It reveals that the desirable L2 inter-check-
point interval jumps from 7 (L1 checkpoints) to 12 to yield
significant execution time overhead, if bandwidth decreases
from 1 to 1/8 because of longer data transfer times.

In summary, the IC size is the only parameter that con-
trols the L1 inter-checkpoint interval, while the L2 interval
depends on all four parameters (i.e., IC size, CR, core count,
and BW). Fig. 9 indicates that an increase in CR, core count,
or BW shortens the preferred L2 interval. Under a smaller
IC size, REX takes more frequent L1 checkpoints and gath-
ers a larger batch of L1 checkpoints before placing an L2
checkpoint to reduce the overall execution time, mainly due
to lowering the remote checkpointing cost.

4.1 Runtime L2 Checkpointing Control and
Discussion

Our simulation evaluation of the execution time characteris-
tics under MLC facilitates the development of runtime L2
checkpoint control. To identify the desirable timepoint for
L2 checkpointing, it requires IC and CR values upon each
L1 checkpoint to determine if an L2 checkpoint should be
taken, for a given full memory footprint (of an application).
The IC value is quickly determined by comparing the L1
checkpoint with the very first full checkpoint size, while the
compression ratio (CR) obtained in the immediate prior L2
checkpoint is used. The approximate interval (x) is then
determined from the multivariate interpolation [23] using
the data set presented in Table 1. The dataset represents the
L2 inter-checkpoint interval (in terms of the number of L1
intervals) to yield the shortest overall execution time. The
interval ½x
 ¼ fðIC; CRÞ is computed after each L1 check-
point. If there have been at least [x] L1 checkpoints taken so
far since the last L2 checkpoint, an L2 checkpoint is then
invoked, where [x] is the nearest integer mapping function
which maps a number to the range [4], [9]. This runtime
control is adopted to produce checkpoint files for evaluating
our REX performance, as detailed in Section 5.

5 EVALUATION METHODOLOGY

Experimental evaluation has been performed on our testbed
using various benchmarks. Benchmarks for evaluation are
of three categories: single-threaded, multi-threaded, and
multi-node runs, under the following hardware and system
software settings.

5.1 Hardware and System Software

Our testbed consists of four Dell PowerEdge R610 servers,
each with two quadcore Xeon E5530 processors that operate

at 2.4 GHz and have 8-MB shared cache each. Every server
runs 64-bit CentOS 5.5 with kernel version 2.6.18 and contains
32 GB of physical memory (with the page size of 4096 bytes),
one 7200-RPM SATA disk with 512 GB, one 5400 RPM SATA
disk with 2 TB, and one 512-GB SATA SSD. Additionally, the
servers are connected throughFast Ethernet, Gigabit Ethernet,
and 10-Gigabit Ethernet links for measuring data transfer
rates as a function of file sizes over those links.

Adaptive incremental checkpointing (AIC) software is
installed for the experiment to gather a full checkpoint file
first, followed by a sequence of incremental checkpoint files.
Meanwhile, for the comparison purpose, Xdelta3 [14] and the
popular compression library of bzip2 [21] are installed, so is
the page-aligned delta compressor (called Xdelta3-PA
adopted in AIC). In addition, libhashchkpt [33] is imple-
mented to process the incremental checkpointed files for
comparison.

5.2 Applications and Evaluation Setup

Our evaluation targets single-threaded, multi-threaded, and
multi-node applications, as listed in Table 1. The terms of
applications and benchmarks are used interchangeably in
the subsequent description. Single threaded applications
include five benchmarks from the SPEC CPU2006 suite [19].
Each of them is processor-memory intensive and fits in
1-GB memory. Those benchmarks are chosen as representa-
tive applications of varying fields. SPEC provides a frame-
work to run its benchmarks and to measure the results.
Multi-threaded applications include five benchmarks from
the PARSEC 3.0 suite, which represents workloads for pro-
grams with various emerging applications [20]. Meanwhile,
to test the impact of large memory footprints of multi-node
applications, six applications are chosen from NAS Parallel
Benchmarks (NPB 3.3.1) [18]. All benchmarks selected from
SPEC, PARSEC, and NPB 3.3.1 suites are compiled with the
AIC checkpointing library [12].

For the evaluation purpose, a system with MTBF of
M ¼ 10,000 seconds is assumed, where permanent failures
account for 16 percent (as stated in an earlier study [3]).
Under Linux, while the “kill -9” command gives a simple
way to emulate a failure model, it is very tedious and time-
consuming for extensive evaluation. To conduct our extensive
evaluation, we instead measured the testbed parameters (i.e.,
disk read/write speed, network throughput) and compressor
parameters (of compression/decompression rates, compres-
sion ratio) under REX and its counterparts. Note that REX
counterparts are all incremental checkpoint (IC)-based, hence
following AIC [12] (which determines the most suitable time-
points for L1 checkpoints) to produce a sequence of ICs. For
comparing REX with its counterparts, we gathered a set of
xþ 1 checkpoint files (i.e., the first FC file followed by x IC
files) for each benchmark, where x is the L2 inter-checkpoint
interval in terms of the number of L1 intervals (as detailed in
Section 4). The remaining course of benchmark execution is
assumed to exhibit repeated sets of x checkpoint files.

5.2.1 Summary of Evaluation Findings

A summary of our evaluation findings is provided below,
with their details and discussion given in Section 6.

TABLE 1
Optimum L2 Inter-Checkpoint Interval (in Terms of No. of L1
Intervals) for a Various Combinations of IC and CR Values,

Under Cores ¼ 4 and BW ¼ 1

IC#/CR! 1 2 4 8 12 16

1/16 9 7 7 7 6 5
1/12 8 6 6 5 5 5
1/8 8 7 6 5 5 5
1/4 8 7 6 5 5 5
1/2 7 7 6 5 5 5
1 5 4 4 4 4 4
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� REX shortens the restore latency by a factor of 4.5�,
4.1�, and 5.3� than incremental checkpointing (IC),
Libhash [33], and AIC [12] counterparts, respectively,
and enjoys slightly lower execution time overhead.
Specifically, the overall normalized execution time
ratio is smaller under REX (of 1.029) than under IC (of
1.032), under Libhash (of 1.032), and under AIC (of
1.067).

� REX exhibits better scalability than all its IC-based
counterparts.

� REX’s de-referencing approach yields decompression
rate of 400 MB/s, being multiple times higher than
disk I/O and network throughputs measured on our
testbed. The rate is 21�, 10�, and 4� faster than those
of bzip2, AIC, and Xdelta3, respectively, promising
express execution state restores from failures.

� REX’s page-aware compression module gives rise to
a comparable compression ratio of 2.4� (versus 1.4�
by libhash, 1.8� by AIC, 2.6� by bzip2, and 3.0� by
Xdelta3).

6 RESULTS AND DISCUSSION

Evaluation results on execution time and restore latency are
presented and discussed first, followed by REX scalability,
with testbed measurements and REX deduplication pre-
sented at the end.

6.1 Execution Time and Restore Latency

In this section, our REX is compared against previously
implemented IC-based methods (i.e., IC [38], AIC [12], and
Libhash [33]) and two IC file compressors (i.e., IC-Xdelda3
and IC-bzip2), in terms of the normalized execution time
ratio (z) (defined as the ratio of the overall execution time to
the execution time without checkpointing and without fail-
ures). Eexecution restore under REX and its IC-based check-
pointing counterparts typically involve all IC files plus the
first full checkpoint file. As discussed in Section 3.1, REX
keeps the coalesced set of deduplicated IC files in L1 and in
L2 storage, while its counterparts keep IC files only in L1
storage and every FC file in both L1 and L2 storage. For
extensive evaluation, we collected the set of x þ 1 check-
point files (involving the very first FC file plus subsequent x
IC files, taken under the AIC decision [12]) for each bench-
mark, followed by repeated sets of x IC files until the end of
its execution.

REX and its counterparts all deal with identical sets of
checkpoint files for each benchmark and follow our runtime
L2 checkpointing control (as presented in Section 4) to
invoke remote checkpointing. At each L2 checkpoint time-
point, REX coalesces the just collected batch of x ICs,

deduplicates them, and stores the resulting files in both
local and remote storages. While for every L2 checkpoint,
On the other hand, each REX counterpart at every L2 check-
point timepoint compresses (if required) FC before saving
the results in local and remote storages.

The compressor of AIC involves both the very first full
checkpoint file and the current full checkpoint file for
improved compression, so do the compressors of Libhash
and IC-Xdelda3. In contrast, IC-bzip2 compresses the
current full checkpoint file itself using bzip2. Unlike REX,
however, they do not conduct file coalescence. After com-
pressing, every such checkpointing method transfers the
compressed file to L2 storage remotely via a Gigabit Ether-
net link in the secure mode (i.e., secure copy (“scp”)). For
extensive evaluation, the testbed parameters (i.e., disk
read/write speeds, network throughputs) and compressor
features (i.e., compression ratios, compression and decom-
pression speeds) were measured and presented in Figs. 15,
16, 17, 18, 19 in Section 6.4.

6.1.1 Restore Latency

Given that the time for failure restore is on the execution
critical path, REX most concerns the restore latency upon
failures. The restore latency depends on failure types. A
transient (or permanent) failure incurs the total time spent
to (1) read the checkpoint file(s) from L1 storage (or from
connected L2 storage via the network link), (2) decompress
the file(s) (if requaired), and (3) reconstruct the full system
execution state out of the file(s) in a method-specific way, as
follows. Under IC, AIC, Libhash, IC-Xdelta3, and IC-bzip2,
the full system state is derived from all checkpoint files. On
the other hand, REX conducts page-aware deduplication
according to the coalesced list (if any), to involve only the lat-
est version of every page with its prior version(s) all skipped
for considerably shortened reconstruction times.

Normalized restore times (each averaged over 10,000
event-driven simulation runs, denoted by m) for various
benchmarks are illustrated in Fig. 10, where m is defined as
the ratio of the average restoration time under a checkpoint-
ing method (i.e., REX, IC, Libhash, AIC, IC-Xdelta3, or IC-
bzip2) to that under REX for a given benchmark. For our
evaluation, a multi-core node (with four cores shared by
benchmark execution threads and the L2 checkpointing
thread) is equipped with L1 storage and is connected
through a dedicated Gigabit Ethernet link to remote L2 stor-
age in support of MLC.

Normalized restore times are lower for 13 (out of 16)
benchmarks under REX than under its counterparts, as
shown in Fig. 10. Specifically, Benchmark BS under REX
(see Figs. 17 and 18) is seen to involve small IC files (see
Fig. 3) and to enjoy high compression and quick

Fig. 10. Normalized restore time (averaged over 10,000 simulation runs, denoted by m), taking the restore time under REX as the base, for various
benchmarks.
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decompression, exhibiting the largest restoration time gaps
from those under its counterparts. REX restores from fail-
ures 19þ times quicker than IC, Libhash, AIC, and IC-bzip2;
it is 4.2� faster than IC-Xdelta3. Compressed file sizes and
decompression rates are main determinants for its express
restore from L2 storage. For L1 restore (from transient fail-
ures), the total number of IC files, besides the compressed
size and the decompression rate, plays a vital role on the
total restore time. This is because upon arrival of every IC
file, REX updates the coalesce list (C-List), which tracks the
most recent version of pages resided in the IC file (see
Fig. 5). By leveraging page-aware deduplication and C-List,
REX fetches only the required data blocks to shorten the
restore time after a failure. On the other hand, none of REX
counterparts neither maintains C-List nor adopts page-
aware decompression, thereby calling for all files to be read
out fully and decompressed (if any) before system state
reconstruction is undertaken. As Libhash, AIC, and IC all
exhibit limited compression under BS, they require longer
restore times than REX. On the other hand, IC-bzip2 lags
behind because of its lower decompression rate. While IC-
Xdelta3 has comparable CR and a similar decompression
rate as those of REX, it lags behind REX in restoration due
to its absence of C-List and page-aware decompression.

Meanwhile, REX achieves high CRs for BZ and DC to
yield restore time reduction by 8� to 21� (from Fig. 10)
when compared with other methods. Although three bench-
marks (SP, FE, and CG) have small IC file sizes, m under
REX is higher than that under IC checkpointing because, for
a smaller file size, REX waits for a longer time to invoke
complete coalescence, which discards all prior checkpoint
files resided in L1 and L2. Note that REX has slightly larger
m values than IC (or Libhash and IC-Xdelta3) checkpointing
for the benchmarks of SP, FE, and CG (or SP and FE), due
mainly to its limited compression gains under those bench-
marks. Nonetheless, REX always enjoys the shortest overall
execution times (which include the restore times after fail-
urs) among all benchmarks for every benchmark examined
(as will be seen in Fig. 11).

While LB has large IC file sizes (according to Fig. 3) and
is subject to limited compression (see Fig. 17), REX still
achieve the smallest m among all checkpointing mecha-
nisms. For such a benchmark, REX invokes file coalescence
on every L2 checkpoint (explained in Section 3.4) to reduce
the L2 restoration latency, while taking advantage of
C-List and page-aware decompression to reconstruct the
system states via local checkpointing files for express L1
restoration. The average m values of all benchmarks, as
shown in the rightmost group in Fig. 10, signify that
REX is 4.5�, 4.1�, and 4.0� speedier in restore than its IC,
Libhash, and IC-Xdelta3 counterparts, respectively. In

addition, REX restores from failures 5.3� (6.7�) faster
than AIC (or IC-bzip2).

6.1.2 Execution Time

We measured normalized execution times (averaged over
10,000 event-driven simulation runs) for various benchmarks
using same sets of checkpoint files, system parameters, and
checkpoint method-dependent parameters employed to
gauge the restore latency.

The normalized execution time ratio (z) for various bench-
marks under different checkpointing methods is depicted in
Fig. 11. The figure shows that SP has the smallest z (of 1.002)
under REX, since IC, Libhash, IC-Xdelta3, AIC, and IC-bzip2
lead to their z values of 1.005, 1.005, 1.023, 1.014, and 1.026,
respectively. Having relatively small full checkpoint (FC) size
of 41.5 MB and tiny IC file size of 1.25 MB (see Fig. 3 and
Table 2), SP invokes a small checkpointing cost per checkpoint
under REX, to favor a short checkpoint interval for lowered
rework costs after failures, achieving the lowest overhead of
0.2 percent. On the other hand, REX’s counterparts (i.e., AIC,
IC-Xdelta3, IC-bzip2) spend significant amounts of times to
compress (see Fig. 19) FC on every L2 checkpoint, resulting in
higher overall execution times.

Similarly, REX exhibits smallest z values for those bench-
marks with tiny IC file sizes (i.e., BS, FE, and CG), as can be
found in Fig. 11. The execution times of those benchmarks are
almost identical under IC as under Libhash, because com-
pressing the involved IC files takes small times under Lib-
hash. In general, Libhash and IC exhibit almost identical

Fig. 11. Normalized execution time ratio (z) (the ratio of the overall execution time to the execution time without checkpointing and without failures).

TABLE 2
Target Benchmarks and Their Memory Footprints

(MFs) in Pages of 4 KB Each

Benchmarks MF (in pages)

S
P
E
C
C
P
U
2
0
0
6 bzip2 (BZ)-Compression & decompression 91791

lbm (LB) - Fluid Dynamics 107213
milc (MI) - Quantum Chromodynamics 173646
sjeng (SJ) - Artificial Intelligence 46458
sphinx3 (SP) - Speech recognition 10236

P
A
R
S
E
C

blacksholes (BS) - Portfolio 158699
bodytrack (BD) - Computer Vision 9422
cannel (CA) - Chip design 252142
fluidanimater (FD) - Hydrodynamics 78895
ferret (FE) -Content similarity search 26412

N
P
B
3
.3
.1

BT - Block Tri-diagonal solver 176962
CG - Conjugate Gradient 123220
DC - Data Cube 254555
FT - Discrete 3D FFT 1320583
LU - Lower-Upper Gauss-Seidel solver 149567
UA - Unstructured Adaptive mesh 1791114
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overall execution times for any benchmark which has low
compression under Libhash. Although BS enjoys high com-
pression under IC-bzip2, the overall execution time is
extremely high due to excessive compression time overhead
(i.e., at the slow rate of�2 MB/s). Similarly, with small IC file
sizes but relatively large FC sizes and limited compression
under all other compressors, Benchmark CG incurs very high
execution time overhead of 17 percent for IC-Xdelta3, of 13
percent for IC-bzip2, and of 18 percent for AIC, in sharp con-
trast to 0.6 percent under REX. Benchmark FT (or UA)
involves larger checkpoint files sizes (i.e., at least 3.5 GB each)
to yield z of about 10 percent (or 11 percent) under REX, in
comparison to 11 percent (or 12 percent) under both IC and
Libhash, as depicted in Fig. 11. Benchmark UA has large
checkpoint sizes, but their CR values are small and their
decompression rates are low under IC-Xdelta3, AIC, and IC-
bzip2, making their corresponding z values to stand respec-
tively at 1.23, 1.24, and 1.38, far larger than 1.11 under REX.

Note that if the involved core count of a node increases
from 4 to 8, the normalized execution time ratios of Bench-
marks FT and UA reduce from � 1.11 down to � 1.09 under
REX (not shown in Fig. 11). This reduction in z is mainly
due to then hiding a larger portion of checkpoint time
overhead (resulting from more cores) from the execution
critical path.

With larger IC file sizes and small to no compression,
Benchmarks LB, SJ and BT experience slightly longer overall
execution times under REX than under IC. On an average, z
under REX is 1.029, in contrast to 1.032, 1.032, 1.075, 1.069,
and 1.106, respectively, under IC, Libhash, IC-Xdelta3, AIC,
and IC-bzip2.

6.2 REX Scalability Evaluation

This section presents our evaluation results of REX scalabil-
ity (in terms of higher failure rates and reduced network
bandwidth). Six representative benchmarks are chosen for
evaluation, covering various IC file sizes (as compared to
full checkpoint size) and CR values. Specifically, chosen
Benchmarks LB and DC belong to the large IC file size
group, while BS and CG (or BZ and CA) are in the smaller
(or moderate) IC size group. On the other hand, Bench-
marks BZ, BS, and DC have high CR values, while CA (or
LB) exhibits a moderate (or negligible) compression gain.

6.2.1 Impacts of Failure Rates

The overall execution time always extends as the failure rate
increases. A higher failure rate desires more frequent check-
pointing to curtail execution rework after failures, but more
frequent checkpoints come naturally with higher check-
point overhead, thereby longer overall execution times.

We measured the normalized execution time (averaged
over 10,000 event-driven simulation runs) ratios for six rep-
resentative benchmarks with various failure rates under
REX and IC, as illustrated in Fig. 12. All simulation parame-
ters, except MTBF, employed in this subsection are identical
to those used in Section 6.1. Each group of bars under a
benchmark in the figure represents z values for three system
failure rates (i.e., MTBF of 10,000 seconds (as 1x), 5,000 sec-
onds (as 2x), and 2,500 seconds (as 4x)).

As can be seen in Fig. 12, z surges as the failure rate hikes
for every benchmark under REX and IC. For example, z for
BZ under REX with the failure rate of 1x (or 2x and 4x) is
1.7 percent (or 2.4 and 3.4 percent), while the value under IC
equals 1.9 percent (or 2.9 and 4.3 percent). Similarly, REX is
subject to slightly lower execution time extension when the
failure rate is doubled (or quadrupled) than IC for LB, BS, and
DC, leading respectively in z of 1.1 percent (or 2.8 percent),
0.3 percent (or 0.6 percent), and 1.4 percent (or 3.4 percent),
as opposed to 1.1 percent (or 3.0 percent), 0.9 percent (or
2.8 percent), and 2.0 percent (or 5.2 percent), respectively.
Hence, REX is less vulnerable to failure rate hikes than IC.

6.2.2 Impacts of Node Count

The number of nodes that share network bandwidth for L2
checkpointing to remote shared storage plays a vital role on
available network bandwidth available per node and thus
I/O throughput per node. As the node count rises, the I/O
throughput per node decreases with an increasing overall
execution time overhead. A checkpointer that achieves high
overall size reduction (i.e., smaller IC file sizes and/or better
CR values) is to take a short time for compression and to
incur a small extra execution time when I/O or network
bandwidth drops.

Given MTBF of 10,000 seconds and slashing network and
I/O bandwidth down to 1=2 and 1=4 of its original level, we
rerun the event-driven simulation 10,000 times to measure
the normalized execution time ratio (z), as demonstrated in
Fig. 13. The bars referred by 1x, 2x, and 4x in the figure rep-
resent the z values under a network link and remote storage
I/O shared by one node, two nodes, and four nodes,
respectively.

Fig. 13 reveals that REX incurs additional execution time
overhead for BZ, BS, and DC by 0.1 percent (or 0.2 percent),
0.0 percent (or 0.0 percent), and 0.2 percent (or 0.4 percent),
respectively, when scaling down I/O and link bandwidth
down to 1/2 (or 1/4). With same I/O and link bandwidth
drops, however, IC suffers from more pronounced extra
time overhead, by 0.5 percent (or 1.5 percent), 1.5 percent
(or 4.6 percent), and 0.8 percent (or 2.5 percent), respectively

Fig. 12. Normalized execution time ratio (z) under various failure rates. Fig. 13. Normalized execution time ratio (z) under various scale-sized I/
O and network bandwidth.
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for BZ, BS, and DC. The results confirm that compression
could markedly lower the overall execution time. Mean-
while, REX is subject to slightly higher (1.2 percent) extra
execution time overhead for LB under 4x than under 1x,
due to limited compression then present, whereas IC experi-
ences 1.0 percent extra time overhead. In addition, REX cuts
down the overall execution time far more than IC for CG
due to its small IC file sizes. In general, REX always outper-
forms IC, provided that file size reduction exists.

6.3 REX Overhead Assessment

Implemented on top of AIC [12], REX concurrent check-
pointing involves overhead in the computing resource for
deduplication and in memory (besides local and remote
storage) for holding checkpoint-related data pages and
deduplication files, as shown in Fig. 5. Given a job execution
and L2 checkpointing (by a spawned thread) run concur-
rently, the deduplication process may interfere regular job
execution more as the memory size available for deduplica-
tion is less, possibly resulting in an increase in the regular
job execution time, when compared to that under an unlim-
ited memory assumption.

To assess REX time overhead on regular job execution,
we measured the normalized execution time (averaged
over 10,000 event-driven simulation runs) ratios for six rep-
resentative benchmarks with various memory sizes avail-
able for deduplication under REX and IC, as illustrated in
Fig. 14. Except for available memory sizes, all simulation
parameters adopted in this overhead assessment are identi-
cal to those used in Section 6.1. Each group of bars under a
benchmark in the figure represents z values for four avail-
able memory sizes (i.e., A ¼ 100 percent denoting memory
available for deduplication equal to the memory footprint
(MF) of an execution benchmark, A ¼ 75 percent as memory
available for deduplication equal to 75 percent MF, etc.).

With significantly smaller incremental checkpoint sizes
under REX, Benchmarks BS and CG incur no additional exe-
cution time overhead even available memory is extremely
scarce (of only 25 percent), as shown in Fig. 14. However, BS
and CG under IC suffer from more execution time overhead
(e.g., by 1.5 percent) as the available memory size drops
(e.g., to A ¼ 25 percent). From the figure, REX is seen to
exhibit execution time overhead ranges from 3.2 percent
(underA ¼ 100 percent) to 8.5 percent (underA ¼ 25percent)
for CA benchmark, and from 4.9 percent (under A =
100 percent) to 7.3 percent (under A ¼ 25 percent) for DC
benchmark. In contrast, IC yields execution time overhead
ranges from 3.7 percent (underA¼ 100 percent) to 8.8 percent
(under A ¼ 25 percent) for CA benchmark, and from

5.5 percent (under A ¼ 100 percent) to 7.9 percent (under
A ¼ 25 percent) for DC benchmark. Meanwhile, Benchmarks
BZ and LB have their z values to stay nearly the same under
REX as under IC over all available memory sizes examined,
with a larger z for a small A.

Although IC does not involve any compression over-
head, its z values hike for all benchmarks when the size of
memory available for deduplication (which serves as tem-
porary storage to keep an execution snapshot) shrinks, due
to its increased L1 checckpointing time overhead, because a
regular job execution then halts longer in order to finish
writing its L1 checkpoint files (of a snapshot), resulting in
higher execution time overhead.

6.4 Testbed and REX Deduplication

The objective of this section is to determine the testbed
parameters (i.e., data read/write speed, network through-
put) and compressors attributes employed by REX and its
counterparts.

6.4.1 Testbed Measurement

We measured the maximum data transfer rates over Fast
Ethernet, Gigabit Ethernet, and 10-Gigabit Ethernet links
between a pair of connected nodes, by transferring various
sized files, ranging from 2 MB to 4 GB, multiple times from
one node to a connected node in secure and non-secure
modes. Our secure mode used the “scp” (secure copy) com-
mand, while the non-secure mode employed the “nc” (Net-
cat) command. In addition, we measured the highest
possible I/O throughputs of a fresh 2-TB HDD with 5400
RPM and a fresh 512-GB SSD (both having the ext3 file sys-
tem) in contention-free environments under file sizes rang-
ing from 2 MB to 4 GB. The disk write speed was measured
after executing the sync command while Page-cache [22]
was enabled, found to be always greater than 512 MB/s for
both disks. In Linux, Page-cache hides the data write latency
by utilizing the unused memory area as temporary storage
(i.e., the disk buffer) and achieves a speed comparable to
that of memory copies. However, for data reads, Page-cache
does not reduce the time for the very first read of a file. The
sync command forces all dirty data in memory to be written
to the disk. The disk read speed under a file size was
obtained by reading multiple same-sized files (first read),
and the shortest read time of them was adopted to deter-
mine the maximum read throughput from the disk.

The measured throughput results of data transfer are
depicted in Fig. 15, where the throughputs for both Gigabit
and 10-Gigabit Ethernets under scp increase gradually as
the file size rises from 2 MB to 128 MB before flattening out,
to achieve the maximum rate of 46 MB/s. Similarly, nc
exhibits a gradual (or marked) rise in the transfer rate up to
32 MB (or 128 MB) for Gigabit (or 10-Gigabit) Ethernet, with
the peak rate of 112 MB/s (or 241 MB/s). Over Fast Ether-
net, however, both scp and nc have an almost constant
throughput (of 11 MB/s) for all file sizes.

Disk I/O speeds measured for a wide range of file sizes
under HDD and SSD are demonstrated in Fig. 16. It is
observed that the HDD (or SSD) read speed increases mono-
tonically from the file size of 2 MB to 16 MB (or up to 64 MB)
before saturating thereafter to around 47 MB/s (or 141 MB/

Fig. 14. Normalized execution time ratio (z) under various levels of mem-
ory available for deduplication.
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s). The write speeds (with Page-cache enabled) on both
disks always exceed 512 MB/s for all tested file sizes.

6.4.2 REX Deduplication and Comparative Results

The REX’s deduplication module is designed to satisfy the
page level compression/decompression such that a page can
be independently decompressed. As per our knowledge,
there is no such compressor that works on a page boundary.
Thus, for evaluation, we contrasted our REX deduplication
with popular compression libraries (e.g., bzip2 [21] and
Xdelta3 [14]) in terms of the compression ratio (CR), compres-
sion rate, and decompression rate. Additionally, page-aligned
delta compressor (Xdelta3-PA) implemented using Xdelda3
library under AIC [12] as AIC and hash-based compressor
used by libshashchkpt [33] as Libhash are also compared. The
compression ratio denotes the ratio of the aggregate data vol-
ume of all original checkpoint files to that of all compressed
checkpoint files for a given benchmark.

Deduplication Effectiveness. The effectiveness of deduplica-
tion (or compression) is reflected by its resulting CR (com-
pression ratio). The CR results of different compressors for all
benchmarks are depicted in Fig. 17, where the bars in the
rightmost group indicate the GM values for the five compres-
sors. From the figure, REX is seen to have its CR varying
widely from 96 (for BS) to 1.05 (for BT). Benchmarks BT, LU
display almost no compression gain for all compressors.
Although bzip2 shrinks its search window down to as small
as three bytes for compression [21], REX outperforms bzip2 in
5 out of 16 benchmarks (i.e., with higher CR values), signify-
ing benefits due to global duplicate patterns (i.e., patterns
shared across checkpoint files) under REX. Being a page-
aligned delta compressor, AIC has to identify identical page
numbers from the immediate prior checkpoint file (if any) for
compression. Naturally, AIC cannot compress the very first
checkpoint file, making its overall CR value smaller than that

of Xdelta3, even though it employs the Xdelta3 library.With a
relatively larger block size (of 256 bytes), Libhash exhibits the
worst compression ratio for all benchmarks, except MI and
FT. Note that while a smaller data block size (e.g., 128, 64, or
32 bytes) may be adopted for Libhash, it results in higher
overhead due to the fixed signature (of say, 16 bytes per data
block forMD5 digest) maintained for each data block, render-
ing an inferior compression ratio.

REX employs fixed block size (of 32 bytes) and shares the
duplicate patterns across the checkpointed files. This shar-
ing advantage is revealed from the results of BZ, MI, FD,
DC, FT, and LU, in which REX enjoys higher CR values
than its bzip2 counterpart (which conducts local deduplica-
tion only, despite its use of overhead-heavy varying length
data patterns). The mean CR of REX over all benchmarks is
2.4, in contrast to 2.6, 3.0, 1.8, and 1.4, respectively, of bzip2
Xdelta3, AIC, and Libhash.

Similarly, the weighted average decompression rates
under various benchmarks for REX are illustrated in Fig. 18.
From the figure, bzip2 is found to have the slowest decom-
pression for all benchmarks except CA, for which Xdelta3
takes the longest time. Note that compression and decom-
pression rate results under Libhash are almost constant (i.e.,
�200 and 500 MB/s, respectively) in our testbed for all
benchmarks, as demonstrated in the figure. Its compression
rate mainly depends on the hash (say, MD5) rate for given
block size (of 256 bytes), while decompression simply de-
references data patterns from the prefetched buffer.

As expected, REX has far speedier decompression than
bzip2 for all benchmarks, mostly due to variable data pat-
tern sizes under bzip2. The GM value of decompression
rates of all benchmarks for REX is 401.3 MB/s, which is
20.9�, 10.1�, and 4.1� faster than those of bzip2, AIC, and
Xdelta3, respectively.

Separately, the lowest decompression rate of REX (equal
to 315.0 MB/s for FD) is many times faster than the maxi-
mum HDD (or SSD) read speed, which stands around 47
MB/s (or 141 MB/s) (see, Fig. 16), indicating that its data
decompression time is well dwarfed by the disk read time
during execution state restore.

Fig. 15. Network throughput of different links measured in our testbed
under various file sizes in both secure and non-secure modes of data
transfer.

Fig. 16. I/O throughput of different storages measured in our testbed
under various file sizes.

Fig. 17. Compression ratio (CR) results, normalized w.r.t. the original
checkpoint data volume for various benchmarks.

Fig. 18. Weighted average decompression rates for various benchmarks
(with REX under the pattern length of 32 bytes).
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Additionally, Fig. 19 shows the data compression rates
(in megabytes per seconds, MB/s) under various bench-
marks. From the figure, the compression rate of REX for BZ
equals 63.3 MB/s, whereas those for bzip2, Xdelta3, and
AIC are 6.6, 19.7, and 36.1 MB/s, respectively, denoting that
REX is 9.6�, 3.2� and 1.8� faster than bzip2, Xdelta3, and
AIC, respectively. Having the largest compression rates for
REX (of 94.0 MB/s), AIC (of 180.0 MB/s), and Xdelta3 (of
140.0 MB/s) but the smallest rate for bzip2 (of 1.8 MB/s),
the benchmark BS reveals that the compression rate is algo-
rithm-dependent.

The geometric mean (GM) of compression rates for all
benchmarks under REX is 45.2 MB/s, representing 7.12�,
4.40�, and 3.37� faster than bzip2, Xdelta3, and AIC,
respectively. Note that the measured compression and
decompression rates of bzip2 using our testbed closely
match those reported earlier [35].

7 RELATED WORK

Various checkpointing mechanisms have been pursued, aim-
ing originally at fault tolerance for long-running jobs [3], [11].
Their primary concern has been mostly on reducing storage
time overheads associated with checkpointing [6], [7], [8],
[10], [28], [39]. To this end, incremental checkpointing (IC) has
been commonly adopted [7], [8], [11], [12], [30] for overhead
reduction, by saving only modified and new (due to dynamic
allocation) memory pages into the checkpoint files. Mean-
while, adaptive checkpointing for fault tolerance was consid-
ered earlier by either adjusting the checkpointing interval
dynamically during task execution [9] or omitting checkpoints
when the systemwas predicted to be safe [13]. Further, IC has
been enhanced by either skipping checkpoints dynamically
(based on the expected recovery time) [10] or computing the
optimal block boundaries dynamically (rather than the fixed
page boundaries) via a secure hash function, based on the his-
tory of changed blocks [11]. FENCE dynamically estimates
system vulnerability in order to take appropriate actions [31].
Earlier hash-based IC compares the results of hashed data
blocks with those of the immediate prior version, to decide if
data blocks have beenmodified [11], [33], [34].

Recent adaptive IC (AIC) [12] predicts the most suitable
points of time to do checkpoints, considering mean time
before failure (MTBF) and smallest checkpoint latency possi-
ble, mainly focusing on the similarity degree of memory con-
tents with respect to those of the prior checkpoint. It yields a
checkpoint file which includes only those dirty and new
pages.

MLC (multi-level checkpointing) can withstand a failure
that renders one node inaccessible entirely (including its
associated local storage) [3], [4], [6], [32], making it possible
to greatly enhance job execution resilience. MLC does not

perform every checkpointing to all storage levels because
high-level storage (beyond the local, L1 level) is typically
remote and shared. Instead, it takes more frequent check-
points to less expensive L1 storage while checkpointing less
frequently to more resilient high-level storage [3], [4].
Besides local storage overhead involved, MLC also con-
sumes network bandwidth for data transfer to checkpoint
files in remote nodes and/or shared storage. Recent articles
analyzed the desirable L2 inter-checkpoint interval (as a
function of L1 intervals) under a given failure rate and con-
stant costs for checkpointing and restore [36], [37], [40].

8 CONCLUSION

Checkpointing takes the job execution states repeatedly and
keeps them in storage as checkpoint files. It permits job exe-
cution recovery from failures using the prior checkpoint file
(s). A restore-express (REX) strategy for MLC has been
addressed to accelerate execution restore (after failures)
drastically when compared with all earlier IC-based coun-
terparts, while enjoying execution time overhead reduction
slightly. With adaptive IC (introduced earlier [12]) to guide
its first-level (L1) checkpointing, REX follows our developed
runtime control for the second-level (L2) checkpointing at
desirable time points, aiming to accelerate failure restore
while keeping the overall execution time near the smallest
possible. For effective L2 checkpointing (to remote, persis-
tent storage), the batch of IC files produced since the last L2
checkpoint is coalesced before deduplication using data pat-
terns existing not only within the coalesced L2 file but also
across earlier L2 checkpoints. This is made possible by tak-
ing advantage of two unique insights for overhead reduc-
tion. Employing a dedicated L2 checkpointing thread to run
concurrently with the execution threads in the multi-core
system, REX limits the execution time overhead below
3.0 percent. According to the evaluation results obtained on
our testbed under 16 benchmarks from SPEC, PARSEC, and
NPB suites, REX is found to lower the mean restore latency
by a factor of 4.5� and 4.0�, when compared with its base-
line incremental checkpointing counterpart and Lib-
hashchkpt. This proposed REX strategy applies to any
system-level incremental checkpointing, be periodic or
adaptive, for accelerating its execution restore after failures.
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