IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 7, JULY 1991 731

Concise Papers_

Efficient Algorithms For Selection of
Recovery Points in Tree Task Models

Subhada K. Mishra, Vijay V. Raghavan, and Nian-Feng Tzeng

Abstract—In this note we develop efficient solutions to the problem
of optimally selecting recovery points. These solutions are intended for
models of computation in which task precedence has a tree structure and
a task may fail due to the presence of faults. For the binary tree model, an
algorithm to minimize the expected computation time of the task system
under a uniprocessor environment has been developed. The algorithm
has time complexity of O(N?2), where N is the number of tasks, while
previously reported procedures have exponential time requirements. The
results have been generalized for an arbitrary tree model.

Index Terms— Checkpoints, dynamic programming, error recovery,
reliability, rollback.

I. INTRODUCTION

Rollback and recovery strategies have been widely used in several
software systems to provide reliability and fault tolerance. These
techniques have, in particular, been used to support integrity and high
availability of complex software systems such as a DBMS and an
OS. Recovery from a failure typically involves saving the (relevant)
state of the system so that when an error is detected, the system can
be restored to a previously saved state and the execution restarted
from that point. A survey of earlier work on analytical models for
investigating rollback and recovery strategies can be found in [1]. The
model proposed by Gransky et al. [4] for backward error recovery,
for instance, is a structured approach for providing fault tolerance in
general in software.

A task system representing a computation is a pair (7', <), where
T is a set of tasks and < is a precedence relation (directed acyclic
graph). In many cases, the computation can be modeled by a task
system where the precedence relation is a tree. In practice, such
computations arise quite frequently, particularly when the underlying
algorithm involves divide and conquer, dynamic programming, or
when the main data structure used in an application is a tree. A
common example from the database environment is the processing
of a query that involves the join of a number of relations.

Recovery points (or checkpoints) have been the basis of several
recovery schemes. The positioning of the recovery points involves
certain trade-offs with respect to objectives such as minimum com-
pletion time, minimum recovery overhead, and maximum throughput.
Some of these trade-offs have been presented in [1]. Several aspects
of recovery point selection, including their performance, have been
under investigation. References to the literature on recent research
can be found in [3].

The need for higher reliability of software is growing also in
areas other than real-time processing (e.g., database applications,
information systems) and this trend is likely to grow in the future, par-
ticularly as software becomes more complex. In such environments,
the minimum computation time is more appropriate an objective
rather than satisfying recovery time constraints.

The selection of recovery points in a task system modeled by a
reverse binary tree has been studied by Chen et al. [3]. The authors

Manuscript received June 22, 1990; revised March 13, 1991. Recommended
by N.G. Leveson.

The authors are with the Center for Advanced Computer Studies, University
of Southwestern Louisiana, Lafayette, LA 70504.

IEEE Log Number 9100234.

N
O/ \O

O/ o‘\0

© s & recovery point

Fig. 1. Model of task system with recovery points.

analyze the complexity of placing recovery points in such a way that
the expected computation time, in the presence of faults, is minimized.
They also suggest that the approach can be extended to an m-ary tree
model, for an arbitrary m, of the task system. Both uniprocessor
and multiprocessor systems have been taken into consideration as
alternatives for the processing environment.

In this note we develop an algorithm to find an optimal assignment
of recovery points; i.e., to find the assignment of recovery points that
minimizes the expected computation time of the task system. The
discussions are based on the binary tree task model and the results
are readily extended to an m-ary tree. While the earlier studies have
not given algorithms that are better than exponential time complexity,
we show how an algorithm that has O(N?) time complexity, where
N is the number of tasks in the task system, can be designed for the
binary tree task model.

Dynamic programming has been used previously under a slightly
different model of computation to minimize the maximum and
expected time spent in saving program states [2]. As discussed in
[3], however, a direct application of dynamic programming to our
problem results in an algorithm that requires exponential time.

In Section II we set up the model of the task system and define the
problem; i.e., the optimal assignment of recovery points. Section III
discusses the problem in the context of dynamic programming. In
Section IV we formulate the new solution. Section V describes the
algorithm to compute the optimal assignment and analyzes and
derives the time complexity of the algorithm. In Section VI we extend
the solution to the case of m-ary trees. The conclusions are stated in
the last section.

II. MODEL OF THE TASK SYSTEM

The model of computation used in this study is similar to that
in [3]. Specifically, the task system is modeled as a reverse binary
tree (i.e., the reverse tree represents the precedence relationships). As
shown in Fig. 1, each node in the tree represents a task or process.
The leaf nodes represent tasks that are the starting points of the
computation in the system; these tasks can be executed concurrently.
A task represented by a parent node can begin execution only after
all the tasks represented by its child nodes have completed execution.
The computation is said to have finished when the task at the root
node completes execution. (Henceforth we use “node” to mean “task
represented by the node.”)

A recovery point (RP) associated with any node is set up prior to
the execution of that node. Under uniprocessor environment, intertask
communication is negligible and therefore ignored.

Associated with each task are the following:

t; the time required to complete task ¢ (in the absence of faults),

si the time required to set up a recovery point before task i,

——

0098-5589/91/0700-0731$01.00 © 1991 IEEE

732 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 7, JULY 1991

r; the time required to rollback computation to the recovery point

before task ¢, and

p; the probability that task ¢ completes without failure.

Failures are assumed to occur independently of each other and can
be detected by appropriate acceptance tests (AT) (the time taken to
carry out the AT is assumed to be part of ¢;).

We further define the following notations for a uniprocessor system
environment where task executions may not overlap in time: let T;
be the expected computation time of the task system represented by
the subtree rooted at task i; E; be the expected computation time of
task ¢ alone after it is invoked; and A’; be the expected time starting
when task i fails its AT until it resumes computation.

The following expressions for the computation times defined above
can easily be derived based on simple principles of probability [3]:

1) if there is a recovery point before task ¢,

K;=r; (1a)
E; =t:/p: + (1/p: — DK (1b)
Ti=Ty+Tir+ Ei +s; (19

2) otherwise,
Ki=Ku+ Eu+ Kir + Eir (28)
E; =tifp: +(1/pi — 1)K (2b)
T.=Tu+Tir + E; (20

where il and ir are the root nodes of the left and right subtree of
node ¢, respectively.

III. OpTIMAL PLACEMENT OF RECOVERY POINTS

Based on the model defined previously, the optimization problem
can be formally stated as follows: let there be N nodes in the
task system modeled by a reverse binary tree under a uniprocessor
environment; given t;,s;,r;, and p; for each node, select a set of
nodes at which to place the recovery points so that the expected
computation time of the task system is a minimum.

An immediate observation is that each leaf node must be preceded
by an RP, since otherwise it would not be possible to recover from
failure of a leaf node. Even then, an exhaustive evaluation of the oN/2
possible assignments would lead to time complexity O N - 2/¥/2

(each evaluation, i.e., computation of T}, would require time O(N)
and there are approximately N/2 internal nodes).

It is easy to see that, for any given ¢, F; is a constant function of
K; (from (1b) and (2b)). Therefore a bottom-up construction of the
optimal solution will require only T; and ’; to be computed at each
step. The aforementioned equations thus reduce to

1) if there is a recovery point before task ¢,

K,=r (3a)
Ti=Tu+Tir+ti/pi + (1/pi — DK + s; (3b)
2) otherwise,
K; =tu/pa+ Ku/pa + tir /Dir + Kir [pir (42)
T; = Tu+Tir + ti/pi + (1/pi — 1)K, (4b)

An intuitive way to partition the problem would be: let T* be the
optimal expected time of computation for the subtree rooted at ¢, with

- — — = -

Fig. 2. Partitioning scheme that leads to exponential time complexity (op-
timal solutions to subtrees rooted at a, b, ¢, d, and e can be combined with
the solution for B).

a maximum of k < 7(¢) recovery points allowed, namely,

TF = min{tl/p, +(1/p; — 1)K

+sit [Tt +17].

31,5220
0<ji1452<k—1

r - - : _jl. :72
ti/pi+ (1/pi = DKi+ min/ [T,x +Tlr]}

0<51452<k

where 7(i) is the number of nodes in the subtree rooted at ¢, and K;’s
are computed using (3a) and (4a). According to the aforementioned,
the solution to a given problem instance with, say, v recovery points
would be Ty,;.

Consider two sets of solutions for the subtrees of i: an optimal so-
lution (T} and T;,) and any other (not necessarily optimal) solution
(T}, and Ty,). Notice that, while computing T3, in the first case (i.e.,
when there is an RP before 7), K; is a function of 7, whereas in the
other, it depends on K; and K;r. While computing T} using (4), if
the corresponding solutions to the subtrees are such that K7 is less
than K7, for the choice of no RP at , it is possible that suboptimal
solutions for the subtrees (i.e., T") give rise to a smaller T;. Based on
this observation, one can conclude that the principle of optimality (5]
does not apply for this formulation. In the next section, we discuss
this aspect of the problem in details.

One way to avoid the possibility of not considering such subop-
timal solutions is to partition the problem as follows (see Fig. 2).
A recovery point is associated with each leaf node in one of the
subtrees, say B, and those are the only recovery points in B. In such
a case, none of the suboptimal solutions (see above) to the rest of the
subtrees need to be taken into consideration while constructing the
solution to the problem. This is because a recovery from failure of any
node in B does not require the execution of any nodes of the other
subtrees (because of the RP’s at the boundary). Such a partitioning
scheme has been used in [3]. However, that scheme requires an
exponentially large number of combinations to be evaluated, leading
to a computationally expensive solution.

IV. PROPOSED PARTITIONING TECHNIQUE

Interestingly, a solution with a polynomial time complexity can
be formulated, as discussed in the following. We observe that T; in
(3b) is optimized when the solutions for the subtrees, i.c., T;; and
T:r, correspond to the solutions with least value of T among all
possible solutions. On the other hand, to obtain the optimal solution
when using (4b), we must use those solutions to the subtrees that
contribute the least after the effects of both 7" and K are considered.
This becomes apparent when we rewrite (4b) as the following:

T =ti/pi FTu+ (1/p: — V)(ta/pa + Ku/pva)
+ Tir + (1/pi = V)(tir/pir + Kir [Pir)- ®)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 7, JULY 1991 733

S0. hi — Height of the tree

S1. Initialize: Compute A; and T; for leaf nodes ((N/2)+1 < i < N)
S2. Compute K; and 7T; for internal nodes (1 < i< N/2)

Let d be the depth® of node :.

Let B; be the subtree rooted at node i.
Let 3 be the number of leaf nodes in B;.

Let v be the number of nodes in B,.

S2a. /° When the number of RP’s is less than 3 */

for 0 < j < B do(0<j < 2"9)
Set K;; and T; ; to oco.

S2b. /* When the number of RP’s is between 3 and v */
for § < j < vdo (284 < j < 2!
for k = 0 (No RP before ¢) or k = 1 (RP before ¢) do)
for I RP’s allocated to the left subtree of B; (0 < I < min(j — k, 2"7))

Compute A7, ; and T;,; using both solutions (with minimal 7" and
minimal f) for the left and right subtrees of B;.
Save the two sets of values: those with smaller T’ as T; ;,1, and those
with smaller f as T; ;o and the corresponding K; ; values.

S2c. /* When the number of RP’s is between v and v */

for y < j <vdo (2'”““’1 <j <)

Set K;; and T;; to K;, and T; . respectively.

Outline of Algorithm rpassign.

By grouping these terms appropriately, T; can be expressed as the
following:

T, =t:/pi + fa + fir ©)
where
fi =T+ (1/p: — V(t;/p; + K;/p;),

j=idlorir.
U]

Observe that in (6) the three terms which constitute 7; depend,
respectively, on ¢ (root of the subtree), the solutions to its left subtree
and the solution to its right subtree. Thus an optimal solution to the
subtree rooted at ¢ must consist of such solutions to its subtrees that
the sum of f;; and f;, is a minimum.

Therefore solutions with minimal value of f must be used to
construct the solution at a higher level. This will ensure that the
solution computed for the parent node is optimal. Such a scheme
will require, for every subtree, computation of the solution with a
least value of f along with the solution with minimal 7.

We thus arrive at the following proposition which forms the basis
of the principle of optimality.

Proposition 4.1: In an optimal solution, the solutions to the two
subtrees must either correspond to a minimal value of function f or
be optimal (i.e., with minimal expected computation time).

A bottom-up’ formulation corresponding to (5) can now be stated
as: let T,"fo be the expected computation time for the subtree rooted
at ¢, when f is a minimum, and Ti'fl be the optimal expected time
(i.e., with least T"), with a maximum of & < n(:) recovery points
allowed, where 7(¢) is the number of nodes in the subtree rooted at
i. The set of solutions that must be taken into consideration are

{ti/pi +si + (1/pi — D)r;

FITL 4T, §Lj220, 0<jl+j2<k—1

and
{ti/pi + [T + T2+ (1/pi - 1)
(/P + Kot [P+ tie [ir + K32 o /pir)}
Ji1,j220, 0<jl+j2<k
where 21,22 € {0,1}.

1This is not a pure bottom-up formulation since one of the expressions that
must be computed for a subtree requires information about the parent node

(pi in (7).

To restate, at each node (except the root) two solutions are selected:
Tl'fn is that solution for which function f is a minimum and fl“i'fl is the
solution yielding a minimal value. And the solution we are seeking
is Troot.1-

V. ALGORITHM rpassign AND ITS TIME COMPLEXITY

An outline of algorithm rpassign, which is employed to compute
the optimal expected computation times, is given above. Without
loss of generality, we assume a complete binary tree model in the
discussions in this section. The notations used are: 1) N: the number
of nodes in a complete binary tree; 2) v: maximum allowed number
of recovery points; and 3) K; ;. and T} ; .: expected value of A
and T;, given a maximum of j recovery points, with z = 1 being
the value when 7} is minimal, and z = O being the value when f
is minimal.

In the outline, S1 requires v - (N + 1)/2 steps. S2a requires
2hi=4 steps, and S2c requires v — 279+ 4 1 steps. S2b requires
(2himd+1l _ ghi=dy. 9. 9hi=d geps corresponding to the ranges of
J, k, and ! (assuming that the computation within the for loops take
constant time). Since v can, at most, be N — 1, ie, 2"+ — 1,
and number of nodes at depth d is 27, the time complexity can be
expressed as

hi
T(N) = O(N?) + Y 272"
d=0

4 (2hit1 _ ghi=d+1y
4 (Ml _ghizdy g ghi=d] ®
Dividing throughout by 2"+, we get:
hi
SOV +2"7 Y /24 (2 - 1) 4277 @)
d=0 .
ki
= O(AYZ) + 2h\+1 Z[2d _ 1/2 + 2h1—-d] (10)
. d=0
— O(NZ) + 2hi+1
CRMT 1= (hi+1)/24 2 2. (1 - 1/2’”“)]. (1)

ZReference depth is zero for root.

734 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 7, JULY 1991

This reduces to (2*+! replaced by N):

T(N)

= O(N?) + N(N - 1) — ’“;1

N+ N -1). (12)

Clearly, the previous expression is O(N?) and thus we have for-
mulated a polynomial time algorithm. In terms of space complexity,
the algorithm would require a table each of whose entries holds two
values. Also, the bookkeeping is slightly higher, because values of
both K and T must be stored for each node. Although this means a
higher price in terms of memory, it is possible to solve the problem
in polynomial time. In any case, the space requirement is also a
polynomial function of N. Particularly, it is in the exact order of
4-N-N.

A complete form of the algorithm along with a more detailed
analysis of the time complexity is included in [7].

VI. SOLUTION FOR M-ARY TREE MODEL

In order to extend the aforementioned solution to m-ary trees, we
must redefine K;, F;, and T; as follows:
1) if there is a recovery point before task ¢,

Ki=r (132)
E; =ti/pi+(1/p:i - DK; (13b)
T;=Ta+Te+ - +Tim+Ei+s: (13¢)

2) otherwise
Ki=Ku+Ea+K2+Ei2+ -+ Kim+ Eim (14a)
E;=ti/pi+ (1/pi - 1)K; (14b)
I;=Ta+T2+ - -+Tim + Ei. (14¢)

Without specifying the details of the algorithm and analysis, we
state that an algorithm designed along exactly the same lines as
rpassign would have a time complexity given by

hi
T(N) = O(N2) + Z md[mhi—d + (m’”“ _ m'"_'“")
d=0
+ (mMTH) g (m’“"")m_ll (15)

corresponding to (8) above. Notice that this is a general expression
and (8) is the case for a binary tree which is obtained by substituting

2 for m. This expression reduces to O(N™), which again is poly-
nomial. However, as might be expected, the algorithm has a growth
rate which increases with the arity of the tree.

VII. CONCLUSIONS

In this note we have formulated a solution for the problem of
assigning recovery points in a task system modeled by a reverse
binary tree. We have also shown that the corresponding algorithm
has polynomial time complexity, particularly O(N?). While the
complexity results have been based on a complete tree, it is easy
to extend them to the general case (i.c., where a subset of nodes are
absent) without compromising with the complexity of the algorithm.
The results have been extended to the case of an m-ary tree, for an
arbitrary m, where the time complexity increases to O(N™).

Although we have restricted our discussions to concurrent execu-
tion of tasks in a uniprocessor system, the results can be extended to
a task model in multiprocessor environment that is similar to those
proposed in [3], [4], and [6].

Minimizing the computation time is chosen as our objective
because for many applications, the system response time (which is re-
lated to the computation time) tends to be of primary concern. Under
the real-time environment, satisfying recovery time constraints may
be an additional goal, which has not been taken into consideration
in this work.

ACKNOWLEDGMENT
The authors wish to thank the anonymous referees whose com-

_ments helped improve the presentation of this paper.

REFERENCES

{1] K.M. Chandy, “A survey of analytical models of roll back and recovery

strategies,” IEEE Trans. Comput., vol. 8, pp. 40—47, May 1975.

K. M. Chandy and C. V. Ramamoorthy, “Rollback and recovery strategies

for computer programs,” IEEE Trans. Comput., vol. C-21, pp. 546556,

June 1972,

[3] S.K. Chen, W.T. Tsai, and M.B. Thuraisingham, “Recovery point
selection on a reverse binary tree task model,” IEEE Trans. Software
Eng., vol. SE-15, pp. 963-975, Aug. 1989.

[2

—_—

[4] M. Gransky, I. Koren, and G.M. Silberman, “The effect of operation
scheduling on the performance of a data flow computer,” IEEE Trans.
Comput., vol. C-36, pp. 1019-1029, Sept. 1987.

[5] E. Horowitz and S. Sahni, Fund. Is of C Algorithms.
Rockville, MD: Computer Sci. Press, 1978.

[6] B. Indurkhya, H.S. Stone, and L. Xi-Cheng, “Optimal partitioning of

randomly generated distributed programs,” IEEE Trans. Software Eng,
vol. SE-12, pp. 483-495, Mar. 1986.

[7] S.K. Mishra, V. Raghavan, and N. Tzeng, “Efficient algorithms for
selection of recovery points in tree task models,” Center for Advanced
Computer Studies, Univ. Southwestern Louisiana, Lafayette, LA, Tech.
Rep. TR 90-5-6, 1990.

