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Abstract—With various wireless technologies developed over
the past few years, a ubiquitous and integrated architecture is
envisioned for future wireless communication. An important op-
timization issue in such an integrated system is how to minimize
the overall communication cost by intelligently utilizing the avail-
able heterogeneous wireless technologies while, at the same time,
meeting the quality-of-service requirements of mobile users. In
this paper, we first identify the cost-minimization (CM) problem
to be NP-hard. We then present an efficient minimum-cost data-
delivery algorithm based on linear programming (LP), with var-
ious constraints, such as channel bandwidth, link costs, delay
budgets, and user mobility, taken into consideration. In case of
insufficient bandwidth for communication with the core network,
prefetch is employed to fully utilize the wireless-network capacity.
If multiple routes are available, a probability-based approach is
taken for CM. Extensive simulations are carried out to evaluate
the proposed CM scheme. Our results show that the proposed
LP approach can effectively reduce the overall communication
cost, with small overhead (< 3%) for signaling, computing, and
handoff. We expect that minimum-cost data delivery will become
imperative for the future heterogeneous wireless networks and the
emerging 4G wireless systems.

Index Terms—Cost minimization (CM), heterogeneous wireless
networks, linear programming (LP), quality of service (QoS).

I. INTRODUCTION

W ITH VARIOUS network characteristics and commercial
concerns, a number of wireless technologies have been

developed over the past few years, and they are likely to coexist
for many years to come. For example, the cellular systems
[1]–[3] have evolved from the first-generation analog system
to the second-generation digital system, and they are presently
entering the era of 3G that supports not only voice but also
data traffic at a speed of up to 2 Mb/s, while the 4G system is
under development for achieving a data rate that is ten times
higher. On the other hand, a series of complementary IEEE
standards, including 802.20 [4], 802.16e [5], 802.16 [6], 802.11
[7], and 802.15 [8], have been developed or are currently under
development to effect data communication in mobile and fixed
broadband wireless-access networks, local- and metropolitan-
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area networks, and personal-area networks, respectively. In
particular, 802.20 and 802.16e target at mobile broadband
wireless-access networks, providing users moving at vehicular
speed with a data rate from 1 to 30 Mb/s in a wide area. 802.16
offers fixed broadband wireless-access network with data rate
up to 75 Mb/s, which can be allotted to T1-level connections
for business customers and/or to the best effort DSL-speed
connections for home customers. 802.11 supports low-mobility
users in small cells, at the data rates varying from 1 to 54 Mb/s.
Recently, this cost-effective technology is being deployed ag-
gressively for establishing metro-scale “cellular WiFi” net-
works [9] to support seamless Internet access in urban areas. In
addition to aforementioned terrestrial communication systems,
the satellite [10] is a vital component in the wireless system,
providing global coverage and high-speed data transmission.

While most of these wireless technologies are deployed
independently for now, the service providers have most interest
to own and operate overlaid heterogeneous wireless systems,
which integrate multiple wireless technologies with partially
overlapped coverage areas and provide ubiquitous network ser-
vice to mobile users. For example, several mobile carriers such
as Verizon, Sprint PCS, and T-Mobile are anxious to include
wireless LAN (or WiFi) access among their service offerings.
In order to access various wireless networks/technologies, the
mobile host (MH) may be equipped with one or multiple
programmable wireless-interface card(s) (e.g., based on the
programmable radio technology [11], [12] or an approach
similar to mobile-access router [13]), resulting in twofold flex-
ibility that may enable the optimization of data delivery: 1) An
MH may select one of multiple available wireless-access tech-
nologies at a particular location, because one area may be
covered by multiple wireless networks with different costs,
data rates, and mobility-support capabilities, and 2) an MH
may use different access technologies when it travels in the
network and arrives at different locations covered by various
wireless networks. From the standpoint of the service provider,
it is an important issue to minimize the overall communication
cost by intelligently using the available heterogeneous wireless
technologies.

In this paper, we consider a typical scenario where an
MH X is involved in massive data transmission while travel-
ing (or staying, as a special case). For example, MH X may
participate in a large peer-to-peer (P2P) network, where the
members share resources such as movie files [14], [15]. Given
the large data volume and the limited link capacity, a long data-
transmission time (e.g., up to hours) may be expected, during
which MH X needs to serve as either a receiver or a data
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Fig. 1. Scenario of a heterogeneous wireless environment.

source continuously upon its travel or stay. MH X accesses the
Internet through available heterogeneous wireless links in order
to communicate with its peers. In addition, certain quality-of-
service (QoS) requirements (e.g., delay) may be called for,
depending on the type of applications. For example, the user
may require downloading a movie file and playing it at the same
time, and thus, the delay requirement is associated with such an
application. The objective is to minimize the communication
costs of the data transmission to/from the MH while meeting
the QoS requirements.

Intuitively, the least expensive technology available should
always be employed for data transmission in order to minimize
the communication cost. This naive approach, however, does
not guarantee QoS requirement, since the low-cost networks
may not provide sufficient bandwidth to achieve the required
QoS. At the same time, the low-cost networks are not available
anytime anywhere either. For example, when MH X in Fig. 1
is covered by high-cost cells only, continuing aggressive data
transmission will noticeably increase the total communication
cost. Thus, MH X may defer its data transmission or decrease
its data rate until it enters the coverage of high-speed low-
cost cells, as long as the delay budget can be met. Although
a simple greedy algorithm can be derived based on intuition,
it is nontrivial to develop effective schemes in minimizing
the communication cost while simultaneously meeting QoS
constraints. In this paper, we propose a linear-programming
(LP) [16] algorithm that takes into consideration such con-
straints as channel bandwidth, link costs, delay budget, and user
routes. In case of insufficient bandwidth for communication
with the core network, prefetch is employed to fully utilize the
wireless-network capacity. When multiple routes are available,
a probability-based approach is taken for cost minimization
(CM). Extensive simulations are carried out to evaluate the
performance of the proposed approach. Our results show that
the LP algorithm can effectively reduce the overall cost of data
transmission.

The rest of this paper is organized as follows. Section II
discusses background and related work. Section III introduces
the system architecture and signaling protocols. Section IV
defines the CM problem and proves it to be NP-Hard. Section V
presents our proposed LP algorithms. Simulation results are

illustrated in Section VI. Finally, Section VII concludes this
paper.

II. RELATED WORK

A series of efforts have been made, so far, to enable and
enhance the integration of heterogeneous wireless networks,
focusing on the system framework that supports interopera-
ble signaling, seamless roaming, Internet accessing, security,
authentication, authorization, and billing. For example, led by
telecommunication industry, some initial steps have been taken
for integrating the emerging wireless LAN’s and the well-
established cellular systems [17], [18]. On the other hand,
there are several proposals from the Internet society [19]–[21],
aiming to efficiently implement Internet protocols in wireless
networks for connecting mobile ad hoc networks to the Internet.
In the meantime, new techniques, such as iCAR [22], MACA
[23], PARCELS [24], and Multi-hop Cellular [25]–[27], have
been proposed for employing ad hoc technology to improve
the performance of cellular systems, or vice versa.

CM has been long recognized as a critical design issue in
heterogeneous wireless networks. Stemm and Katz [28] con-
sider an overlaid structure of room-size (e.g., infrared LAN),
building-size (e.g., IEEE 802.11b wireless LAN), and wide-
area data networks (e.g., 2.5G or 3G cellular systems), where
the lower the level of overlay, the smaller area it covers and the
higher data-rate per-unit-coverage area it has. “Vertical hand-
off” is employed to support MH roaming from one network
to another. The MH always switches to the lowest reachable
overlay to achieve the highest data-rate per-unit-coverage area.
In order to adapt to the system dynamics (e.g., the varying
traffic load), a policy-enabled handoff scheme is proposed in
[29] to take multiple factors into considerations. Specifically,
a cost function is defined as the weighted sum of network
bandwidth, the MH’s power consumption, and the network-
access cost. The available network with the least cost is chosen
for communication.

The pioneering work of Katz et al. has motivated our research
on CM in heterogeneous wireless networks. The approaches
considered in [28] and [29], however, only take into consider-
ation the local networks being accessed, which may not result
in optimized overall performance (see the example discussed in
Section I). Thus, a “longer term planning” strategy for the entire
data-transmission period (rather than only at a given snapshot)
is needed to achieve global optimization. In addition, the QoS
requirement of the MH is not considered in [28] and [29]. In this
paper, we establish a more general CM model based on not only
system information (e.g., available bandwidth, access costs,
network congestion) but also on a mobile users’ status (e.g.,
traffic type/amounts and moving routes) in order to minimize
the overall communication cost while simultaneously meeting
the QoS requirement.

III. SYSTEM ARCHITECTURE

In this section, we give an overview of the system architec-
ture considered in this paper. Five components are involved in
CM: 1) the MH, 2) the communication peer, 3) the access point
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Fig. 2. Signaling protocols for CM problem.

(AP), 4) the network-map server (NMS), and 5) the mobility
agent, as shown in Fig. 2. The MH receives data from, or sends
data to, its communication peer (e.g., a node in a P2P network
or a data server in the Internet). An AP is a unit that provides
wireless access to the MH. It could be a wireless LAN access
point, a cellular base station, an IEEE 802.16 base station, an
IEEE 802.20 base station, or a satellite. The NMS maintains a
database of every AP in the system. The mobility agent helps
the MH obtain its mobility information.

Before initiating data transmission, the MH first negotiates
with its communication peer to acquire data-traffic information
(e.g., the total amount of data to be transmitted and its delay
budget). If the amount of transmitted data is less than a prede-
fined threshold, no attempt in minimizing the communication
cost is made, which is due to overhead involved. Otherwise,
CM is initiated. More specifically, the MH collects needed
information, including MH mobility and network topology,
from the mobility agent and the NMS, respectively, and runs
the CM algorithm (to be discussed in Section V).

The network topology and user mobility are important inputs
in running our proposed CM algorithm. In the rest of this
section, we briefly discuss the signaling protocols to maintain
that information, although their design and implementation are
not the focus of this paper.
1) Signaling Protocol for Network-Map Maintenance:

When an AP is established, it sends to its associated NMS a
network-update message, which includes its location (e.g., GPS
coordinates), estimated coverage area, transmission technology,
communication costs, and data rates. The coverage area could
be estimated as an ideal circle or in any arbitrary shape de-
pending on the environment and the estimation model. Upon
receiving a network-update message, the NMS creates an entry
in its database, with a timer associated. The AP periodically
sends update messages to refresh the timers. If no new update
message is received when the timer expires, the entry will be
removed from the database. Note that once a cell has been
established, no significant changes on the AP’s location, cover-
age, data rates, and/or communication costs are expected in the

near future. Thus, the timer can be set to a large value, and the
AP can send update messages to NMS infrequently, resulting
in ignorable overhead. Based on information maintained in the
NMS database, a 2-D network map can be established. Upon
receiving a request from the MH, the NMS replies with a
(partial) network map and information associated with the AP.
Such information can also be buffered by the MH for future use,
where the MH only needs to contact the NMS to check if the
buffered network map is out of date.
2) Signaling Protocol for User Mobility: The mobile user’s

moving pattern (i.e., the traveling route) could be predicted
precisely, roughly, or may be unpredictable at all. Three typical
types of user mobility are discussed as follows:

1) Predetermined routes and speeds. The mobile user may
follow a predetermined route and move at predetermined
speeds. A typical example is a railway system (which is
a main carrier in many metropolitan areas) transporting
multitudinous people every day. For instance, 500 000
passengers take trains daily in New York’s Pennsylvania
Station; tens of millions of people travel by train daily
in other major cities around the world; moreover, all of
these passengers are current or potential mobile-network
users. The train follows predetermined routes and precise
schedules and may travel through many cells (in systems
such as cellular, IEEE 802.20, or satellite) and stop at a
number of stations, where, for instance, wireless LAN’s
are available.

2) Predetermined routes but variable speeds. For example,
buses follow regular routes, but depending on the traffic
condition, they may move faster or slower than the prede-
termined schedule. Another example is self-guided tour-
ing. A tourist may carry an electronic cicerone provided
by the tourist agent and follow the recommended route to
visit the scenic landmarks. The MH moving schedule can
be estimated according to the average pacer speed. The
actual moving speeds of the tourists, however, may vary,
resulting in deviation from the estimated schedules.

3) Uncertain routes. The moving route of a mobile user is
sometimes undetermined. For example, there may be two
(or more) alternative routes available from home to office,
and the mobile user may choose either one of them with a
certain probability. A self-learning model (to be discussed
next) may be adopted to learn the possible routes of the
mobile users and the probability that a route is taken.

The MH needs to acquire route information as the input of
the CM algorithm. Two approaches for mobility management
are considered in this paper: 1) system-mobility management,
where mobility information is maintained by the system and
provided to the MH via mobility agents that are installed on the
carriers (e.g., trains, buses, or cars) to broadcast mobility infor-
mation periodically and 2) autonomous-mobility management,
where mobility information is maintained by every MH via a
self-learning model. More specifically, the moving routes are
mapped to a graph, where the edges represent routes traversed
by the MH, and the vertices represent the intersection points.
A visiting counter and a stale timer are associated with each
edge. The visiting counter is increased by one whenever the
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corresponding route is taken by the MH and decreased by one
whenever the stale timer expires. At any vertex, the probability
of taking a particular edge for next movement is calculated by
dividing the visiting counter associated with this edge by the
sum of the counters of all edges connecting to this vertex. As
a result, a route is associated with a higher probability if it was
traversed more frequently in the recent past.

IV. PROBLEM FORMULATIONS AND NP-HARD PROOF

In this section, we formulate the CM problem and prove its
NP-hardness.

A. Problem Formulation

To facilitate our discussion, we consider an abstract model
of the heterogeneous wireless system. Specifically, we assume
that the system is divided into N cells, where each cell (e.g.,
cell i, 1 ≤ i ≤ N ) is served by and only by a set of APs that are
denoted by {Aij |1 ≤ j ≤ |Ai|}, where |Ai| is the number of
APs serving cell i. Clearly, the cells discussed here are different
from the nature cells formed by the coverage of APs. The
former can be obtained by dividing the whole area according
to the boundaries of the natural cells. An AP Aij connects to
the core network through a dedicated communication link that
may be either wired or wireless, with a cost rate of pc

ij and an
average data rate of rc

ij b/s. At the same time, Aij provides
wireless access for the MH within its coverage, with a cost
rate of pm

ij and an average data rate of rm
ij b/s. The cost rate

is the weighted sum of several factors, such as service charge,
signaling overhead, and power consumption, measured by the
cost per-unit amount of data.

We consider an MH with β programmable wireless-network
interface cards, each of which can tune to different wireless
technology. Note that one such wireless interface card can be
used to access one AP at a given time only, although it can
switch from one to another at different times. Assume that the
MH sends or receives a sequence of K data blocks with M
bits of data in total, while traveling in the coverage area of
the heterogeneous wireless system. Let Mk denotes the size
(in terms of bits) of data block k(1 ≤ k ≤ K). Clearly, M =∑K

k=1Mk. A data block k is assumed to have a delay bound dk,
indicating the time by which data block k should be received.

We denote τi as the dwelling time of the MH in each cell
i. τi is obtained from the calculation based on the network
map and the user mobility. When an MH is in cell i, it may
or may not communicate with Aij during the entire period of
τi in order to minimize the communication cost. We denote tij
to be the time that the MH connects to Aij . Clearly, tij ≤ τi.
The total amount of data downloaded during tij is denoted
by Lij . We also introduce a prefetch methodology where a
certain amount of data may be prefetched by APs in order
to enhance the CM process. We denote fij as the amount of
prefetched data at Aij with a corresponding cost gij . The cost
of data transmission/reception through Aij is denoted as Cij

and calculated based on tij , rc
ij , pc

ij , rm
ij , and pm

ij . The goal of
the CM algorithm is to determine the values of tij , Lij , fij , and

gij such that the total cost C =
∑N

i=1

∑|Ai|
j=1 Cij is minimum,

Fig. 3. Summary of inputs and outputs for the CM problem.

with all delay constraints satisfied. The inputs and outputs of
the CM algorithms are summarized in Fig. 3.

B. NP-Hard Proof

In this section, we prove that the CM problem is NP-hard
by providing a polynomial reduction from a known NP-hard
problem, which is known as the continuous multiple-choice
knapsack (CMCK) problem, to the CM problem.
1) CMCK Problem: The CMCK problem was first formu-

lated by Ibaraki et al. in 1978 [30] and proven to be NP-hard.
The CMCK problem considers N groups, where each group i
has Ki items. The item j in group i has a value of νij and a
size of sij . The CMCK problem is to select a fraction xij(0 ≤
xij ≤ 1) of, at most, one item from each of the N groups, in
order to satisfy both the value and the size constraints. More
specifically, the sum of the size is less than a size threshold S,
and the sum of the value is greater than a value threshold V .
The CMCK problem is defined as follows.

Given V > 0 and S > 0, does a set of 0 ≤ xij ≤ 1 exist,
such that

N∑

i=1

Ki∑

j=1

νijxij > V (1)

and

N∑

i=1

Ki∑

j=1

sijxij < S (2)
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hold, where, at most, one {xij |1 ≤ j ≤ Ki} is nonzero, for
∀ 1 ≤ i ≤ N?

2) Polynomial Reduction From CMCK to CM Problem:
Now, we consider a simplified scenario of the CM problem,
where only one delay bound needs to be satisfied for completing
the transmission of all data (M). The simplified CM problem
with an objective minimum-cost value (denoted by C) can be
defined as follows.

Given M > 0 and C > 0, does a set of 0 ≤ xij = tij/τi ≤ 1
exist, such that

N∑

i=1

|Ai|∑

j=1

rm
ij τixij > M (3)

and

N∑

i=1

|Ai|∑

j=1

(
pc

ij + pm
ij

)
rm
ij τixij < C (4)

hold, where
∑|Ai|

j=1 xij ≤ 1, for ∀ 1 ≤ i ≤ N?
In the above CM problem, the definition of rm

ij , τi, pc
ij , and

pm
ij can be found in Fig. 3. We assume that data is downloaded

to the MH at rm
ij b/s. tij is represented as τixij , where xij is

between zero and one. To facilitate the discussion, we reiterate
(3) and (4) by letting V ′ = M ; S ′ = C; x′ij = xij ; K ′i = |Ai|;
ν ′ij = rm

ij τi; and s′ij = (pc
ij + pm

ij )rm
ij τi; then, we can reformu-

late the minimum-cost problem as follows.
Given V ′ > 0 and S ′ > 0, does a set of 0 ≤ x′ij ≤ 1 exist,

such that

N∑

i=1

K′
i∑

j=1

ν ′ijx
′
ij > V ′ (5)

and

N∑

i=1

K′
i∑

j=1

s′ijx
′
ij < S ′ (6)

hold, where
∑K′

i
j=1 xij ≤ 1, for ∀ 1 ≤ i ≤ N?

Clearly, the parameters of (5) and (6) can be mapped to that
of (1) and (2), and we can see that the difference between the
CMCK and minimum-cost problems is the chosen of xij or
x′ij . In CMCK, at most, one item in group i can be chosen,
i.e., xij �= 0 is true for, at most, one j in 1 ≤ j ≤ Ki; in
minimal-cost problem, multiple items can be chosen in each
group i, i.e., there can be more than one x′ij �= 0 for 1 ≤ j ≤
K ′i. One additional constraint of the CMCK problem is that
∑K′

i
j=1 x

′
ij ≤ 1.

Recall that a polynomial reduction from problem A to prob-
lem B requires mapping the YES instance of A to the YES
instance ofB, i.e., YES→YES, and mapping the YES instance
of B to the YES instance of A, i.e., YES← YES.

We first prove YES→ YES: given a set of xij that satisfies
inequations (1) and (2), can we construct an instance of the
minimum-cost problem that satisfies inequations (5) and (6)?
This can be easily achieved by matching the variables of

inequalities (1) and (2) to inequalities (5) and (6), respectively.
That is to say, we let V ′ = V ; S ′ = S; x′ij = xij ; K ′i = Ki;

ν ′ij = νij ; and s′ij = sij ; then, we can verify that
∑K′

i
j=1 x

′
ij ≤ 1

holds since, at most, one x′ij �= 0 for 1 ≤ j ≤ K ′i, and all x′ij is
between zero and one.

We then prove YES← YES: given a set of x′ij that satisfies
inequations (5) and (6), can we construct an instance of
the CMCK problem that satisfies inequalities (1) and (2)?
Starting from inequality (5), we first find the largest value
of ν ′ijx

′
ij in each group i, and we denote this index j as pi.

Then, we can rewrite the left-hand side of (5) as LHSeq5 =
∑N

i=1 ν
′
ipi
x′ipi

+
∑N

i=1

∑K′
i

j=1,j �=pi
ν ′ijx

′
ij . Notice that v′ipi

x′ipi

is the largest value of ν ′ijx
′
ij in group i for 1 ≤ j ≤

K ′i, we have: LHSeq5 =
∑N

i=1 ν
′
ipi
x′ipi

+
∑N

i=1

∑K′
i

j=1,j �=pi
×

ν ′ijx
′
ij ≤

∑N
i=1 ν

′
ipi
x′ipi

+
∑N

i=1(K
′
i − 1)ν ′ipi

x′ipi
=

∑N
i=1 ×

ν ′ipi
x′ipi

K ′i ≤ K ′imax

∑N
i=1 ν

′
ipi
x′ipi

, where K ′imax =
maxN

i=1K
′
i. Thus, we have K ′imax

∑N
i=1 ν

′
ipi
x′ipi
≥ LHSeq5 >

V ′ →
∑N

i=1 ν
′
ipi
x′ipi

> (V ′/Kimax) = V ′′ > 0.

In addition, it is easy to verify that
∑N

i=1 s
′
ipi
x′ipi

< S ′, since
∑N

i=1 s
′
ipi
x′ipi
≤

∑N
i=1

∑K′
i

j=1 s
′
ijx
′
ij < S ′. Now, we summa-

rize the YES ← YES proof as follows: given a set of x′ij
that satisfies inequalities (5) and (6), we first find out the pi

for each group i in polynomial time, such that ν ′ipi
x′ipi

is
the largest among ν ′ijx

′
ij , for 1 ≤ j ≤ K ′i. Then, we construct

the following inequations in polynomial time, which match
inequations (1) and (2) of CMCK problem: 1)

∑N
i=1 ν

′
ipi
x′ipi

>

V ′′ > 0, where V ′′ = (V ′/Kimax), K ′imax = maxN
i=1K

′
i; and

2)
∑N

i=1 s
′
ipi
x′ipi

< S ′. We have proven that the above two
inequalities hold. Thus, we finish the YES← YES proof.

V. PROPOSED LP ALGORITHMS FOR CM

In this section, we examine several cases of the CM problem
with increasing levels of complexity and discuss the proposed
LP algorithms for each of them.

A. Single Route

We first consider the scenario where an MH traverses a
predetermined route and follows predetermined speeds. Note
that the MH’s moving speed is not necessarily constant. As long
as the speeds (which may vary with time) are predetermined,
one can precisely calculate the dwelling time of the MH in
each cell i, i.e., τi. To facilitate our discussion, we perform a
preprocessing on the network map. More specifically, we divide
theN cells intoN ′ small “cells” so that all delay bounds are due
at the boundary of the small cells.
1) Base Case: We start with a base case, where the fol-

lowing assumption is made: the wireless link between AP and
the MH is the performance bottleneck, i.e., rm

ij ≤ rc
ij(1 ≤ j ≤

|Ai|, 1 ≤ i ≤ N). Thus, APij can always communicate with
the MH at rm

ij b/s.
We have developed an LP model, as shown in Fig. 4, for

the base case. The primary objective of this LP model is
to minimize the total communication cost C by choosing a
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Fig. 4. LP model for predetermined route (base case).

proper value for each tij , such that all constraints 1–7 (given
in Fig. 4) are satisfied. The first three constraints define the
communication cost, which is calculated based on the unit
communication cost between Aij and the core network (i.e.,
pc

ij), the unit communication cost between Aij and the MH
(i.e., pm

ij ), the data rate rm
ij , and the communication time tij . The

fourth constraint ensures the total transmitted data to beM . The
delay budget is specified in the fifth constraint, which ensures
the transmission of the kth data block to be finished no later
than dk. The sixth constraint limits tij , the data-transmission
time between the MH andAij , to be no longer than the dwelling
time of the MH in cell i (i.e., τi).

An AP is available for an MH, if and only if the MH is
within the coverage of the AP, and the MH has the suitable
wireless interface to access the AP. Note that, even when
multiple APs are available, hardware may limit the number
of simultaneous wireless connections that can be established
by an MH. More specifically, with β-programmable wireless
interface cards, the MH may communicate with, at most,
min(β, |Ai|) APs in cell i. With the seventh constraint, the
total data-transmission time between the MH and the access
points in cell i should not exceed τi multiplied by min(β, |Ai|).
Finally, θ(x) is a function that returns the set of all cells that the
MH has visited by time x. The formulated LP model in Fig. 4
is solved by using LP-SOLVE [31], yielding optimal values
of {tij |1 ≤ j ≤ |Ai| and 1 ≤ i ≤ N ′} that minimize the total
communication cost.

In frequency-division duplex system where uplink channel
and downlink channel are separated, the optimization of uplink
cost is just a dual problem of the downlink case. In a time-
division duplex (TDD) system, where the uplink and downlink
share the same channel, if we try to optimize both the uplink
and downlink cost, then we need to let the uplink and downlink
channel share the MH’s cell dwelling time in each AP, which
can be easily implemented in the LP model by adding the
term for uplink dwelling time in constraint 7 of Fig. 4. Other
modifications of constrains in Fig. 4 are also straightforward,
such as adding terms for data and delay requirements of uplink
and the associated cost. Since the LP model in considering both
uplink and downlink is similar to that of downlink only, we
do not bother to list the solution for considering both uplink

and downlink. Notice that in a TDD system, the individual
optimization goals of uplink and downlink may conflict with
each other, and the yielded optimized solution of considering
both uplink and downlink is a compromise of the two indi-
vidual goals.
2) Advanced Case: In the base case, we have assumed rm

ij ≤
rc
ij . Now, we nullify this assumption in order to establish a more

realistic model. If rm
ij > rc

ij , the data-rate limitation between
Aij and the core network may lead to inefficiency, because Aij

cannot draw down data blocks from the core network at a rate
as high as rm

ij and, thus, limits the data transmission to the MH.
Two approaches have been considered to address this problem,
as in the following discussions.

1) Reduce data rate: When rm
ij > rc

ij , Aij may lower the
data rate at its wireless interface by setting rm

ij = rc
ij . This

approach is simple, but it sacrifices the channel efficiency
and results in reduced throughput. Moreover, it may also
increase the communication cost, because the data rate in
the low-cost cell is limited by rc

ij , and thus, the low-cost
resource cannot be utilized thoroughly.

2) “Prefetch”: When rm
ij > rc

ij , Aij may draw down a cer-
tain number of data blocks beforehand and store them in
buffer so that Aij can transmit data to the MH at a high
data rate when the MH enters cell i.

To enable efficient prefetch, we divide tij into two parts
tij1 and tij2 with tij = tij1 + tij2. tij1 represents the time
period when Aij transmits at data rate rm

ij , with the help of
the prefetched data. tij2 represents the time period when Aij

transmits at data rate rc
ij . The optimal values of tij1 and tij2 will

be determined by solving the LP model in Fig. 5. The amount
of prefetched data fij equals (rm

ij − rc
ij)× tij1. If tij1 = 0; no

data is prefetched. Prefetch should be completed before the MH
enters the coverage area of Aij , as specified by constraint 3.2
in Fig. 5. Given the assumption that the route and the speed of
the MH are predetermined, the exact time to start prefetching
is not a crucial issue, as long as prefetch can be finished before
data-transmission begins.

B. Multiple Possible Routes

We now consider the case where the mobile user’s moving
route is undetermined when the data transmission is initiated.
Assume that the mobile user may take one ofW possible routes,
with a probability of Pw associated with Routew(1 ≤ w ≤W )
according to the mobility-management schemes discussed in
Section III. The multiple possible routes may have common or
uncommon paths. Common paths refer to those that are shared
by more than one route, whereas uncommon paths are those
completely disjoint from each other.

There are two issues that need to be handled properly in
multiple possible routes scenario. First, the delay bounds should
be satisfied in the worst case. In other words, the data blocks
are to be transmitted within their delay budgets, even the route
with the lowest capacity is eventually taken by the mobile user.
Second, a prefetch has two impacts on the overall communica-
tion cost. On the one hand, prefetch may reduce the communi-
cation cost by enabling the thorough use of low-cost resources,
but on the other hand, the prefetched data in the untaken routes

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 12:38 from IEEE Xplore.  Restrictions apply.



CHEN et al.: MINIMUM-COST DATA DELIVERY IN HETEROGENEOUS WIRELESS NETWORKS 3517

Fig. 5. LP model for predetermined route with prefetch (advanced case).

become wasteful and, thus, may increase the communication
cost. It is nontrivial to decide whether to employ prefetch or not
and how to use it.

If prefetch is disabled for simplicity, handling multiple pos-
sible routes is not much different from the single route case,
as one can always optimize each route separately without
considering other routes.

At the presence of prefetch, however, it is inefficient to take
the simple approach that considers each route separately by
following the LP model presented in Fig. 5, since the cost of
wasted prefetch data is not taken into account. Our proposed
approach is summarized in Fig. 6, where all routes and their
probabilities are considered in order to minimize the overall
communication cost. We denote τiw as the dwelling time of
the MH in cell i if Route w is taken. The total communication
cost is the weighted sum of the costs of all possible routes.
The communicating cost of Route w (denoted by Cw) is the
sum of its communication cost if it is taken with a probability
of Pw and the cost of wasted prefetch data if the route is not
taken with a probability of (1− Pw), as shown in Fig. 6. The
cost of the wasted prefetch data is pc

ij × fij , since only the
communication link to the core network is used for prefetching
data. Based on the above cost calculation, a penalty is added
to those routes with high prefetch costs. As a result, the route
with lower probability will prefetch a less amount of data to
contain the cost. For the common path of multiple routes, there
is only one set of variables to represent its network parameters
and prefetch data, and the yielding result of this common path
will reflect the compromises of multiple routes. The LP model
aims to minimize the overall cost, based on the probability of
each route when there are multiple possible routes, and it does
not intend to decide for the MH which route to take. Once the
MH chooses any one of the possible routes, the LP model can
be rerun for further optimization of the cost. However, there
is no technical hurdle to let AP decide for MH which route to
take. For example, AP can suggest to MH the route with the
lowest cost.

Fig. 6. LP model for multiple possible routes.

In the above discussion, all possible routes have been taken
into consideration. To reduce computing complexity, one may
consider the routes with high probabilities only. Specifically,
the possible routes are sorted via a decreasing order of their
probabilities. The routes are chosen for consideration from the
top until

∑
w Pw ≥ Γ, where Γ is a predefined constant. The LP

model yields results based on currently available route informa-
tion. While the MH moves, the number of possible routes may
change, or one predetermined route may not be taken. The LP
model is then rerun based on an updated route information. The
probability-based approach for multiple-route scenario does not
aim to deal with very large (nonpolynomial) number of routes.
First, nonpolynomial number of routes is not reasonable in real
scenarios. The number of routes for an MH is usually limited.
Second, the probability of each route will drop with the increase
of the number of possible routes, and the prefetch data in each
route will decrease to near zero if the probability is low. We
assume that the MH’s dwelling time in each cell is known,
and this information in needed as the input of the LP model.
If the MH’s actual dwelling time in any cell is different from
the predicted value, rerun of the LP model is necessary.

C. Variable Speed

In the above discussion, we have assumed that the MH’s
moving speeds are predetermined. This assumption does not
always hold in practical applications. In this section, we study
possible speed variations and their impacts on CM.

Note that not all speed variations affect CM. For example,
the MH may vary its speed in a cell i. As long as the average
speed equals the expected value, τi does not change. As a result,
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TABLE I
NETWORK PARAMETERS FOR SIMULATION SETUP

Fig. 7. Network topology with one WiMax cell, four 3G cells, and 16 WiFi cells.

the same CM schemes, as discussed in Sections V-A and B,
can be employed to yield the same results as the case with a
predetermined speed. If τi changes, however, the CM scheme
will be different.

The above observation motivates us to develop an approach
for the scenario with variable MH moving speed, centering at
the variation of τi. More specifically, the MH maintains an
expected moving speed (V ). Based on the moving speed, the
moving route (either single route or multiple possible routes)
and the network map {τi|1 ≤ i ≤ N ′} can be calculated. Upon
entering a cell (e.g., cell i), the MH keeps tracking its actual
average speed in this cell (denoted by V ). The MH compares
V with V at either of the following two occasions, whichever
arrives earlier: 1) when the MH has spent τi in cell i or 2) when
the MH has finished traversing cell i. If V �= V , τi changes. As
a result, the MH updates V with V and performs CM based
on the updated τi (1 ≤ i ≤ N ′) and the remaining data to be
delivered. Note that, since the MH already has the moving route
and the network map, no extra signaling overhead is incurred.
Although additional delay is expected to run the LP algorithm,
such a computation delay is short, as will be discussed next in
Section VI.

VI. SIMULATIONS AND DISCUSSION

We have carried out extensive simulations to evaluate the
effectiveness and efficiency of our proposed minimum-cost

data-delivery algorithm. Three typical wireless technologies
with different coverage areas, data-transmission rates, and costs
are considered in our simulation. Specifically, we simulate a
number of IEEE 802.11b WiFi, 3G Cellular, and IEEE 802.16
WiMax cells. Their network parameters, including cell radii,
data rates, and costs are summarized in Table I.

WiMax targets at providing wide-area broadband access,
with the longest cell radius and the highest wireless data rate
among the three, as indicated in Table I. We set the data rate of
a WiMax user to be 6 Mb/s, although IEEE 802.16 can reach
a peak rate of 75 Mb/s. WiFi cells locate in the hot-spot areas,
with the smallest cell size. The average user data rate of WiFi
is assumed to be 5 Mb/s, given its maximum raw data rate
of 11 Mb/s. The peak wireless data rate of 3G is 2 Mb/s. We
assume its average data rate to be 1 Mb/s for mobile users. In
addition, we notice that rc

ij is usually higher than rm
ij in WiMax

and 3G systems, and as a result, prefetch is not necessary. The
communication cost has no unit because it is a weighted sum
of service charge and power consumption. It is a separate issue
(outside the scope of this paper) to establish efficient models
for determining cost rates.

The network topology and parameters in our simulations are
shown in Fig. 7. It is a square area with diagonal length of
4 km. We divide this square area into 16 small square blocks,
and each block has a diagonal length of 1 km. We number these
16 blocks from 1 to 16, as indicated in the upper left corner of
each block. A WiMax AP is placed at the center of the square
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and covers the entire square area. Four 3G APs are placed at
locationsA1,A2,A3, andA4, respectively. Since the radius of a
3G AP is 1 km, each 3G AP covers its surrounding four blocks.
For example, 3G AP at location A1 covers blocks 1, 2, 5, and 6.
There are 16 WiFi APs in total. Each of them is randomly and
uniformly distributed inside a block. In Fig. 7, only three WiFi
APs are drawn to avoid too many items included in the figure. A
handoff procedure happens between two APs of different types
or if they are of the same type.

Without loss of generality, we set the start point of all the
routes at the center of block 1 and the destination at the center of
block 16, which are denoted by S and D in Fig. 7, respectively.
We let the MH travel along the straight line connecting the
centers of two adjacent blocks. When arriving at the center
of a block, the MH can choose any of its neighboring blocks
to be the next block to traverse, except for the block from
which this MH enters the current block. Two random routes
are shown as examples in Fig. 7 and are marked as R1 in a
dash dot line and R2 in a solid line. The speed of the MH can
be constant (at 10 m/s) or variable. The MH’s dwelling time
in each cell (i.e., τi, 1 ≤ i ≤ N ′, where N ′ is the number of
cells in the route) can be calculated, given the route and the
speed information. The amount of data (M) to be delivered
and its associated delay bounds may vary in different simulation
scenarios. We define two thresholds Ml and Mh. Ml is the total
amount of data that can be downloaded if the least expensive
AP in each cell is always selected (i.e., by following a greedy
algorithm that selects the AP with the lowest cost). Mh is the
total amount of data that can be downloaded if the AP with
the highest data rate in each cell is always chosen (i.e., by
following a greedy algorithm for minimizing delay). Obviously,
Ml ≤Mh. If Ml = Mh, it implies that the least expensive AP
is the AP with the highest data rate in every cell, and thus,
the optimization problem becomes trivial. If the total amount
of data M falls below Ml, then a greedy algorithm choosing
the least expensive AP in each cell yields the optimal solution.
For M between Ml and Mh, the greedy algorithm selects the
access technology with the highest data rate in each cell. If M
is greater than Mh, then there is no feasible solution because
even data are downloaded at the highest data rate in each cell;
the delay budget still cannot be met. Thus, for a nontrivial CM
problem, we let Ml < M < Mh.

We study the performance of the proposed LP model under
four different scenarios: random single route, random map, ran-
dom multiple routes, and random distribution of cell dwelling
time. For each scenario, we generate 20 different samples and
average their results. In these dynamic scenarios, the routes,
the maps, or the MH’s cell dwelling time change randomly.
Random single route is created by randomly generating a path
from S to D in Fig. 7. Random map is created by randomly dis-
tributing the location of each WiFi AP inside its block. Random
multiple-route scenario is created by combining multiple single
routes together and then feeding them to the multiple routes
LP model in Fig. 6. We have several patterns for the random
distribution of the MH’s cell dwelling time. One is to let the
dwelling time conform to a certain distribution, e.g., a uniform
distribution. Other patterns include increasing or decreasing the
cell dwelling time by a certain amount. Due to the change in

Fig. 8. Performance averaged over random routes.

cell dwelling time, the MH will rerun the LP model for a new
download scheme when it is necessary. Next, we discuss the
simulations in detail.

In the random single-route scenario, we keep the same map
but generate different route randomly for each scenario. Only
one delay bound is specified at the end of route for delivering
a total of M megabytes data, where M varies from 190 to
312 MB. Fig. 8 compares the performances of the LP model
and the greedy algorithm. As can be seen, the LP model without
prefetch achieves a cost reduction of up to 32% (or 20% in av-
erage), as compared to the greedy algorithm. Prefetch can also
help to further reduce the communication cost in any cell i with
rm
ij > rc

ij . By employing prefetch,Aij may draw down a certain
number of data blocks beforehand and store them in buffer
so that Aij can transmit to the MH at a high data rate when
the MH enters cell i. In our simulation, prefetch is employed
at the WiFi APs only. As shown in Fig. 8, prefetch reduces
the overall communication cost by 27% in average, compared
to the nonprefetch case. Although results are not shown here,
the benefit of prefetch increases with the increase of the gap
between rm

ij and rc
ij . Prefetch incurs an extra buffering cost at

the access point, which is assumed negligible. We also consider
the scenario where the MH is equipped with more than one
programmable wireless interface card. Fig. 8 shows the result
of employing two interface cards, which lead to a drop of 50%
in average in the communication cost, compared to the one-
interface-card scenario. In the random-maps simulation, we fix
one route and generate random maps. The result shown in Fig. 9
indicates that the LP model achieves similar cost reduction,
as we discussed in Fig. 8.

In the above discussion, we have ignored the possible over-
head that may result in additional communication cost. The
proposed CM approach introduces three types of overhead,
i.e., signaling, computing, and handoff overheads. They are
elaborated below. First, the signaling overhead is there since
the MH needs to obtain such information as network map and
MH mobility before initiating CM. The impact of the signaling
overhead on the communication cost includes the extra trans-
mission time and the transmission cost associated with this
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Fig. 9. Performance averaged over random maps.

signaling data. With proper design of data structure, the total
amount of signaling data is far less than 1 kB, which takes less
than 3 ms of transmission time, given the core network data
rate in Table I. The actual transmission cost of the signaling
data can be calculated according to the core-network data cost
in Table I. The second type of overhead is introduced by the
computing time needed to solve the LP model. Our simulation
shows that the computation delay is usually between 10 to
20 ms on a Celeron 2-GHz CPU by using the LP-SOLVE [31]
tool. The third type of overhead is caused by handoff, which can
be either introsystem or intersystem handoff. The exact handoff
delay depends on the handoff strategy and the network-traffic
condition. Typical handoff delays among the three different
types of APs are listed below: The handoff delay between WiFi
and 3G is around 400 ms [32]; the handoff delay between 3G
cells is usually less than 100 ms [33]; and the handoff delay
between WiFi cells is less than 100 ms [34]. Although without
known experimental results, we assume that the handoff delay
of WiMax is similar to that of WiFi, i.e., 100 ms between
WiMax cells, 100 ms between WiMax cell and WiFi cell, and
300 ms between WiMax cell and 3G cell. Now, we want to
estimate the delay by taking the above three different types of
overhead into consideration. When the MH is inside a cell, the
longest handoff delay this MH can experience is to hand off
from WiFi to 3G and then to WiMax, which takes 700 ms.
Considering the handoff delay of 100 ms to the next cell, we
have 800 ms in total. Since the sum of the computing delay
and the signaling delay is less than 100 ms, the total delay is
less than 900 ms in a cell. For the worst-case estimation, we
assume a delay of 1 s in each cell introduced by the three types
of system overhead. Given this delay being subtracted from
τi in each cell i and the transmission cost of signaling data
counted into the total cost, we can compute the optimal data-
delivery scheme by running the LP model. We fix one route,
generate random maps, and then average their results. As shown
in Table II, the increase in total communication cost due to
system overhead is no more than 3%.

Now, we study the scenario with multiple delay bounds. We
fix the route and the map and introduce three delay bounds,

TABLE II
IMPACT OF SYSTEM OVERHEAD ON COMMUNICATION COST

Fig. 10. Impact of delay bounds on downloaded data.

at t1 = 153 s for 114 MB, at t2 = 257 s for 163 MB, and at
t3 = 424 s for 230 MB. In Fig. 10, the downloaded data is
compared with the scenario where only one delay bound is
specified at time T = 424 s for M = 230 MB data. As shown
in Fig. 10, an extra amount of data must be downloaded by time
t1 and t2 in order to satisfy the corresponding delay bounds;
thus, the MH is not able to postpone data transmission to future
low-cost cells. Consequently, the overall communication cost
rises in the multiple-delay-bounds scenario.

We have also studied the scenario where multiple possible
routes exist. In particular, we choose three candidate routes
and keep them fixed in the simulation. Associated with each
route is its probability, which is denoted by P1, P2, and P3,
respectively. In our simulation, P1 increases from 0.1 to 0.8,
while P2 = P3 = (1− P1)/2. One delay bound at T = 424 s
is set for M = 230 MB data, and one wireless interface card
is used. It is indicated in Fig. 11 that, with the increase of P1,
the cost of route 1 decreases, since the optimization algorithm
is more in favor of the route with higher probability. At the
same time, the costs of routes 2 and 3 increase with P1, and
the overall cost decreases slightly. Two curves are shown in
Fig. 12 for the cost of prefetched data of route 1 and the average
cost of prefetched data of routes 2 and 3. As shown in Fig. 12,
the increase of P1 results in more prefetch in route 1 and less
prefetch in routes 2 and 3. In general, a higher taken probability
of a route leads to a more aggressive use of this route and a
lower total communication cost in this route.

We change the MH’s cell dwelling time to study the impact
of variable moving speed of the MH. Let τi denotes the cell
dwelling time of cell i, and δ denotes the percentage of variation
of τi. We create three different patterns for the variation of
the cell dwelling time. The first pattern is to increase τi by δ,
ranging from 10% to 50%. The second pattern is to decrease

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 12:38 from IEEE Xplore.  Restrictions apply.



CHEN et al.: MINIMUM-COST DATA DELIVERY IN HETEROGENEOUS WIRELESS NETWORKS 3521

Fig. 11. Impact of route probability on communication cost.

Fig. 12. Impact of route probability on prefetched data.

τi by δ, ranging from 10% to 50%. The third pattern is to
let the cell dwelling time be uniformly distributed between
(1− δ)× τi and (1 + δ)× τi. In our simulation, we fix a route,
and let M = 230 MB. When the MH detects a change in τi, the
LP model will be regenerated and rerun.

Simulation results of patterns 1 and 2 are shown in Figs. 13
and 14, respectively. We show the communication cost versus
the number of reruns in these two figures. As shown in Fig. 13,
when τi increases by δ from 10% to 50%, the corresponding
communication cost drops accordingly. The reason is that the
MH has more time to finish the download task due to the
increase of τi in the cell, and thus, the MH can resort to
cheaper AP to download data instead of more expensive ones.
It is also true that the communication cost reduces with the
increase of rerun times for any δ value. On the contrary, as
shown in Fig. 14, if τi decreases by δ from 10% to 50%, the
communication cost rises, or the MH cannot even finish the
downloading task because it becomes infeasible for the data left
to be downloaded in the remaining time.

Fig. 13. Impact of increasing cell dwelling time.

Fig. 14. Impact of decreasing cell dwelling time.

Fig. 15. Cost comparison when cell dwelling time varies randomly.

Fig. 15 shows the results under pattern 3, which compares
the actual communication cost with the ideal communication
cost if we knew the exact cell dwelling time in advance. The
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motivation for such comparison is to learn the impact of
variable speed on the proposed LP model. As depicted in
Fig. 15, the difference in communication cost between these
two scenarios increases from 3% to 6% when δ goes from
10% to 50%. The result shows that the proposed LP model
works effectively by rerunning the LP model, even when the
MH significantly varies its speed. Fig. 15 also shows that the
system overhead due to handoff, rerunning the LP model, and
signaling overhead is around 3%. This observation conforms to
the simulation results of system overhead in Table II.

VII. CONCLUSION

This paper aims to minimize the communication cost in an
overlay heterogeneous wireless network. We have investigated
and formulated the CM problem, which has been proven to be
NP-hard. We have proposed an efficient minimum-cost data-
delivery algorithm based on LP, with various constraints, such
as channel bandwidth, link costs, delay budget, and user mobil-
ity, taken into consideration. In case of insufficient bandwidth to
the core network, we have proposed a prefetch scheme in order
to fully utilize the wireless-network capacity. When multiple
routes are available, a probability-based approach is adopted
for CM. Extensive simulation has been carried out to evaluate
the proposed CM schemes. Our results show that the proposed
LP approach can effectively reduce the overall communica-
tion cost in various application scenarios, with small overhead
(< 3%) for signaling, computing, and handoff. The proposed
algorithm can be integrated into future heterogeneous wireless
networks and emerging 4G wireless systems for minimum-cost
data delivery.
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