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Abstract

Fault-tolerant techniques that can cope with system fail-
ures in software distributed shared memory (SDSM) are es-
sential for creating productive and highly available parallel
computing environments on clusters of workstations. In this
paper, we propose a new, efficient coordinated checkpoint-
ing technique, called coherence-based coordinated check-
pointing (CCC), for SDSM. Our CCC minimizes both the
checkpointing overhead during failure-free execution and
the cost of recovery from failures by leveraging existing co-
herence information maintained by SDSM. In the presence
of system failures, it allows SDSM to recover from the most
recent checkpoint, saving the re-computation time.

We have performed experiments on a cluster of eight
Sun Ultra-5 workstations, comparing our CCC technique
against both simple coordinated checkpointing (SCC) and
incremental coordinated checkpointing (ICC) techniques by
actually implementing these techniques in TreadMarks, a
state-of-the-art SDSM system. The experimental results
demonstrate that our CCC technique consistently outper-
forms both SCC and ICC techniques. In particular, our
technique increases the execution time slightly by 0.5% to
4% for a 2-minute checkpointing interval during failure-
free execution, while SCC and ICC techniques result in the
execution time overhead of 4% to 100% and 3% to 64%,
respectively, for the same checkpointing interval.

1. Introduction

Software distributed shared memory (SDSM) has be-
come one practical technology for creating productive par-
allel computing environments on workstation clusters. It
simplifies parallel programming tasks by creating a glob-
ally coherent memory address space across interconnected
workstations. Memory coherence is maintained through
manipulating a virtual memory protection mechanism,
which is readily available in most, if not all, commodity
microprocessors, without any extra hardware. Performance
of SDSM is dictated by the number of messages exchanged
and the amount of data transfer over the networks. In most

cases, memory consistency models and coherence enforce-
ment protocols play a significant role on both the commu-
nication frequency and the load of communication traffic.
Consequently, for good performance, a recent SDSM sys-
tem often adopts a relaxed memory consistency model [1],
which makes various optimizations possible. As the sys-
tem size grows, however, the probability of SDSM system
failures increases. This vulnerability is unacceptable, es-
pecially for long-running applications and high-availability
situations. Fault-tolerant techniques are therefore essential
for achieving recoverable SDSM systems.

To cope with system failures, several checkpointing and
message logging techniques for SDSM have been pro-
posed [5, 7, 9, 13, 15, 16, 17, 18, 20, 24]. Coordinated
checkpointing is an effective technique for crash recovery
support in SDSM. It creates a checkpoint during the syn-
chronization process where a globally consistent state of
execution is established to save all computation that SDSM
has performed, up till prior to checkpoint creation. Message
logging was originally proposed for solving unbounded
rollback-recovery associated with an independent check-
pointing technique by logging messages exchanged among
processors. Most of previous work on coordinated check-
pointing for SDSM has assumed a sequential consistency
model and a directory-based memory coherence enforce-
ment protocol. Although it is possible to apply those ear-
lier coordinated checkpointing techniques to recent SDSM
systems under a relaxed memory consistency model, our
experimental results indicate that those earlier techniques
are undesirable because they incur excessive overheads and
keep lots of data unnecessary for SDSM recovery.

Coherence-based coordinated checkpointing (CCC)is a
new, efficient technique we propose in this paper for pro-
viding SDSM with crash recovery support, aimed at reduc-
ing both the checkpointing overheads and the cost of recov-
ery from failures. Our CCC technique relies on memory
coherence enforcement information to select the data truly
necessary for correct crash recovery, minimizing the check-
point size. To assess the impacts of a checkpoint creation
overhead on SDSM performance, we have implemented
our CCC technique, the simple coordinated checkpointing



(SCC) technique, and the incremental coordinated check-
pointing (ICC) technique separately in TreadMarks, a state-
of-the-art SDSM. Experimental results on eight Sun Ultra-5
workstations using four parallel application programs under
the checkpointing interval of 2 minutes show that our CCC
technique causes very low overhead during failure-free ex-
ecution, ranging from 0.5% to 4% of the execution time
when checkpointing is disabled.

This paper is organized into six sections. Section 2 pro-
vides basic background pertinent to this paper, including re-
lated work. Our coherence-based coordinated checkpoint-
ing technique is introduced in Section 3. In Section 4,
we describe our experimental environment, including the
SDSM system, the hardware platform, and the application
benchmarks. Section 5 presents the experimental perfor-
mance results, and Section 6 concludes the paper.

2. Pertinent Background

2.1 SDSM

SDSM creates a shared memory image on top of par-
allel systems with physically distributed processing nodes,
such as distributed memory multicomputers and worksta-
tion clusters. A group of processes run on such nodes to
execute a parallel application program, and they enforce
memory coherence through explicit message exchange. The
memory coherence enforcement protocols are often devised
under the notion of relaxed memory consistency models [1],
aimed at low coherence traffic and good performance. To
this end, release consistency [12] (i.e., one of the least re-
strictive relaxed memory consistency models) is preferred
because it does not guarantee that shared memory is consis-
tent all of the time, but rather making sure consistence only
after synchronization operations (i.e., locks and barriers).
In essence, release consistency ensures a synchronized pro-
gram to see a sequentially consistent execution through the
use of two synchronization primitives:acquirefor a process
to get access to a shared variable, andreleasefor a process
to relinquish an acquired variable, permitting another pro-
cess to acquire the variable.

Lazy release consistency (LRC) [14] is an efficient soft-
ware implementation of the release consistency model. It
postpones coherence enforcement until the acquire is per-
formed (by another process). Instead of sending coherence
information to all other processes at a release, LRC allows
coherence information to be piggybacked on a lock grant
message sent to the process at which an acquire is per-
formed, reducing the number of messages needed for en-
forcing memory coherence. LRC also avoids sending mes-
sages unnecessarily to those processes which do not require
coherence information. As a result, LRC-based SDSM gen-
erally involves fewer messages and less data exchanged
than other SDSM implementations. As SDSM relies on vir-

tual memory traps, its memory coherence is maintained at
the OS page granularity. The multiple-writer (MW) proto-
col and lazy diff creation [6] are designed to alleviate false
sharing and to reduce the data transfer amount of SDSM
when fine-grain application programs are run. MW allows
multiple processing nodes to modify different portions of
the same shared memory page at the same time, whereas
lazy diff creation permits each processor to send only a sum-
mary of modifications for updating an invalid shared mem-
ory page, instead of sending the whole page. Our experi-
ments are conducted on TreadMarks, an LRC-based SDSM
which employs both the MW protocol and the lazy diff cre-
ation technique.

2.2 Related Work

Checkpointing has its root in message-passing systems
and can be classified into two distinct approaches: coor-
dinated and independent [10]. Coordinated checkpoint-
ing [8, 11, 19, 22] requires all processes to synchronize
their checkpoints so that the state contained in the union
of all checkpoints is a consistent global state. Upon a fail-
ure, restoring the system to a globally consistent state of
execution is achieved by gathering data from the most re-
cent checkpoint, and therefore, checkpoints older than the
most recent one can be discarded. Its simplicity has at-
tracted several researchers to study techniques for reducing
both the checkpoint size and the overhead of checkpoint co-
ordination. In particular, Chandy and Lamport presented
the concept of a globally consistent state of execution in
distributed systems [8]. Subsequent investigation into dis-
tributed snapshots resulted in algorithms for reducing the
number of messages required for synchronization under co-
ordinated checkpointing [19, 22]. Elnozahyet al: evaluated
two techniques for tolerating checkpoint latency and for re-
ducing the checkpoint size [11]. Independent checkpoint-
ing [4, 23, 25] allows each process to create a checkpoint
individually at any time. It does not guarantee bounded
rollback-recovery, so previous checkpoints cannot be dis-
carded and garbage collection is necessary to limit the num-
ber of checkpoints stored. We focus on coordinated check-
pointing in this study.

Most of the previous work on coordinated checkpointing
for SDSM is targeted at sequentially consistent SDSM sys-
tems, dubbed SC-based SDSM, with directory-based mem-
ory coherence enforcement employed. Specifically, Carter
et al: [7] estimated coordinated checkpointing overhead of
SDSM using results published separately [11]. Janakira-
man and Tamir [13] demonstrated that some coordinated
checkpointing overheads due to message dependency may
be eliminated. Cabillicet al: [5] incorporated coordi-
nated checkpointing in barrier synchronization of SC-based
SDSM to reduce its checkpointing overhead due to coor-
dination. Recently, Costaet al: [9] partially implemented



coordinated checkpointing in LRC-based SDSM, but they
only presented the results of an independent checkpointing
technique on a cluster of four workstations. No prior work
has ever completely implemented coordinated checkpoint-
ing in an LRC-based SDSM system to assess its overhead
and performance. In this study, we have introduced an effi-
cient coherence-based coordinated checkpointing technique
for LRC-based SDSM, incorporating it in TreadMarks with
experimental results gathered and demonstrated.

3. Proposed Technique

The idea behind checkpointing is to store a state of exe-
cution on reliable storage periodically as a checkpoint dur-
ing failure-free execution, and then, to use it for reconstruct-
ing a state of execution at the beginning of a crash recov-
ery process, saving re-computation time during recovery. In
particular, we make use of transparent checkpointing, where
SDSM automatically creates a checkpoint and no modifica-
tion to application codes is required.

3.1 Concept and Description

Our coherence-based coordinated checkpointing (CCC)
is tailored specifically for a state-of-the-art SDSM system
developed under the notions of lazy release consistency,
multiple-writer, and write-invalidate protocols. It relies on
coherence-related information to select data truly neces-
sary for correct recovery. Specifically, it uses write-notice
records to select a summary of modifications needed for up-
dating shared memory pages in the most recent checkpoint
and follows the SDSM internal memory management rou-
tine to identify portions of a local data segment actually re-
quired to be added to a new checkpoint. Other techniques,
such as simple coordinated checkpointing (SCC) and in-
cremental coordinated checkpointing (ICC), create much
larger checkpoints since SCC flushes an entire memory ad-
dress space of each process as a checkpoint, and ICC tracks
only the shared memory data segment where it has a per-
mission to write-protect memory pages for detecting the
modifications. Next, we explain different segments of the
memory address space in each process of SDSM in details.

The memory address space of each process in SDSM can
be classified into four categories, as follows: (i) a data seg-
ment, (ii) a shared memory segment, (iii) a stack segment,
and (iv) a text segment. Both stack and text segments are
very small in comparison to other segments and have little
impact on checkpointing overheads. A data segment con-
sists of the memory address space allocated through mem-
ory allocation routines, such as malloc() and sbrk(). SDSM
uses this data segment for its internal data structures and
for all local variables of the application program. There
are four types of internal data structures in SDSM, includ-
ing: (i) diffs pools, (ii) write-notice pools, (iii) time-interval
pools, and (iv) twins pools. Diffs pools are allocated for

storing a summary of modifications made to each shared
memory page during every execution interval. Write-notice
pools are used for bookkeeping a list of dirty pages, and the
list is updated at such synchronization points as locks and
barriers. Time-interval pools keep the interval time stamps
for events ordering in SDSM. Twins pools are available for
each shared memory page to create its pristine copy be-
fore performing any write operation, and therefore, a sum-
mary of modifications can be obtained later by comparing
a shared memory page with its twin. Since all these data
structures and local variables are resided in a data segment,
their memory protection modes are managed by the operat-
ing systems, making it impossible to track the changes of
these data through a write-protection mechanism. Conse-
quently, the incremental coordinated checkpointing (ICC)
technique, which relies on adding the modifications to a
previously created checkpoint, has to flush the entire data
segment at every checkpoint creation; so does the simple
coordinated checkpointing (SCC) technique. In contrast,
our CCC technique consults the write-notice, and then,
flushes only local variables and diffs to their corresponding
shared memory pages in the most recent checkpoint, reduc-
ing checkpointing overheads.

A shared memory segment is allocated by SDSM using
a memory mapping operation, i.e., mmap(). SDSM utilizes
this segment solely for shared memory data and manages
it at the OS page granularity. Consequently, the memory
protection mode is regulated on per-page basis and classi-
fied according to the existence of a pristine copy of each
shared memory page (i.e., twin) and to the shared mem-
ory page status, such as (i) private, (ii) valid, (iii) invalid,
and (iv) empty. A shared memory page under the private
status is set to the read-/write-able mode, and so is a valid
page with a twin; a valid page without a twin is set to the
read-only mode, whereas the invalid and empty pages are
set to the inaccessible mode. At the beginning of execution,
SDSM sets every shared memory page on all processors to
the read-only mode using an mprotect() function, and there-
fore, the modifications of each shared memory page can
be tracked. Under the SCC technique, each process sim-
ply flushes the entire shared memory segment as part of
its checkpoint, while ICC reduces the checkpoint size by
selecting only shared memory pages that have been mod-
ified since the last checkpoint. Our CCC technique does
not flush any part of the shared memory segment after the
first checkpoint has been performed, since diffs are suffi-
cient for updating the shared memory pages from the most
recent checkpoint.

While it is possible to migrate the data resided in the (lo-
cal) data segment into the shared memory segment (allow-
ing ICC to track an entire data set using a write-protection
mechanism), doing so has several drawbacks, as follows:
(i) requiring modifications to the application source codes,



restore the shared memory segment;
restore the text and data segment;
restore the stack segment;
restore the stack environment;

wait for all other processes
to check-in;

invalidate dirty pages;

if (the_first_checkpoint)
checkpoint the shared memory segment;

endif

send barrier release message
piggybacked with list of
dirty pages to all other
processes;

else
send check-in message to

barrier manager;

checkpoint the stack segment;
checkpoint the data segment;
save the stack environment;

if (barrier_manager)

wait for barrier release message;
invalidate dirty pages;

if (the_first_checkpoint)
checkpoint the shared memory segment;

endif

save the stack environment;
checkpoint the data segment;
checkpoint the stack segment;

endif

Checkpoint Restoration

Barrier

Figure 1. Pseudo Code for Implementing Our
Coherence-Based Coordinated Checkpoint-
ing Technique in SDSM.

(ii) exhibiting degradation of memory management effi-
ciency as SDSM cannot allocate/deallocate memory space
(for diffs, twins, etc.) on demands, (iii) increasing the com-
plexity of memory coherence enforcement in SDSM, and
(iv) hindering SDSM performance. Therefore, it is not a
viable approach.

In summary, SCC creates each checkpoint by flushing
almost an entire address space of every process to stable
storage at the synchronization point, whereas the ICC and
our CCC techniques attempt to reduce the checkpoint size
respectively by tracking the modifications of shared mem-
ory pages and by leveraging existing coherence-related in-
formation in SDSM. Our experimental results on a cluster
of eight workstations using TreadMarks with four parallel
benchmark programs reveal that the SCC technique indeed
writes a large-sized checkpoint and incurs long latency con-

sistently, hampering SDSM performance. The ICC tech-
nique, on the contrary, reduces the size of shared mem-
ory data necessary to be added to the checkpoint, lower-
ing the checkpointing overhead. Our CCC technique further
decreases the checkpoint size significantly, making check-
pointing in SDSM more affordable and attractive.

3.2 Implementation

Figure 1 shows the pseudo code of our coherence-based
coordinated checkpointing technique for implementing re-
coverable SDSM systems.

3.2.1 Checkpoint Creation Process

At a barrier, the barrier manager waits for all other pro-
cesses to check-in. When all check-in messages have ar-
rived, the barrier manager invalidates its copy of shared
memory pages according to the write-notice (piggybacked
with check-in messages) received, and then, performs a
checkpoint creation as follows:

� Checkpoint the shared memory segmentby first de-
termining whether this is the first checkpoint; if so, cal-
culating the range of shared memory address space ac-
tually used by the application, and then, bookkeeping
the status of each shared memory page resided in that
range. Next, setting the memory protection mode of
all shared memory pages to the read-only mode, and
checkpointing the contents of shared memory pages to
stable storage before restoring the correct memory pro-
tection mode of all shared memory pages according to
their page status kept earlier. If the checkpoint has al-
ready been performed at least once, then there is no
need to checkpoint the shared memory segment, but
only a summary of modifications (which resides in the
data segment) is sufficient for updating the contents of
shared memory pages in the most recent checkpoint.

� Save the stack environmentby using setjmp() in-
struction.

� Checkpoint the data segmentby first consulting the
write-notice records as to whether there are modified
shared memory pages since the last checkpoint; if
so, applying those diffs to their corresponding shared
memory pages in the stored checkpoint, and then,
flushing the entire address space of the local variables
as a part of the new checkpoint.

� Checkpoint the stack segmentby first discovering its
starting address and its size, and then, checkpointing
its content to the stable storage as a checkpoint.

After a checkpoint has been created, the barrier man-
ager sends barrier release messages to all other processes.



Each barrier release message is piggybacked with a write-
invalidation notice specifically compiled for each process.
For any process other than the barrier manager, upon ar-
riving at a barrier, it sends out a check-in message to the
barrier manager and waits for a barrier release message.
When a barrier release message has arrived, it invalidates
its copy of shared memory pages according to the write-
notice (piggybacked with a barrier release message), and
then, performs checkpoint creation using the same proce-
dure as shown above.

3.2.2 Crash Recovery Process

The crash recovery process for our CCC technique is
straightforward. The failed process starts the recovery pro-
cedure by performing a checkpoint restoration, as follows:

� Restore the shared memory segmentby first reading
a starting address and the size of the segment from the
checkpoint, and then, setting an entire shared mem-
ory segment to the read-only mode. Next, it reads a
record (i.e., page address, page status, and page con-
tents) of each shared memory page from the check-
point, changes the memory protection mode of that
page to the read-/write-able mode, restores the page
contents, and changes memory protection mode of that
page according to its page status. These steps are re-
peated till the end of the checkpoint.

� Restore the text and the (local) data segmentby first
reading the starting and ending addresses of each seg-
ment from the checkpoint, and then, using them to set
the size of allocated space for each segment. Next,
it copies the contents of both segments to the corre-
sponding addresses.

� Restore the stack segmentby first reading the top of
stack address from the checkpoint, and then, recur-
sively calling the function that compares the top of
stack address obtained from the checkpoint with cur-
rent top of stack address until they are matched. Next,
it reads the starting address and the size of the stack
segment and uses them to restore the stack contents.

� Restore the stack environment by using the
longjmp() instruction.

As the checkpoint is created at a barrier synchronization
point, the longjmp() instruction returns the recovery pro-
cess to the barrier routine. The recovery process then pro-
ceeds beyond the barrier as if the failure has never occured.
Next, we briefly describe our experimental platform, soft-
ware systems, and application benchmarks.

4. Experimental Setup

Coordinated checkpointing techniques are built on top
of TreadMarks [2] for our experiments. TreadMarks imple-
ments the LRC protocol [14] with several optimization tech-
niques, including multiple-writer and lazy diff creation [6],
to lower the amount of data movement and interprocess
communication. It adopts the UDP/IP protocol for message
exchange, uses the SIGIO signal for delivering request mes-
sages, and relies on a virtual memory trap (SIGSEGV) for
invoking the memory coherence enforcement mechanism.
All checkpoints and message logs are stored in non-volatile
storage (i.e., local disk) for recovery. Our experimental plat-
form is a collection of eight Sun Ultra-5 workstations run-
ning Solaris version 2.6. Each workstation contains a 270
MHz UltraSPARC-IIi processor, 256 KB of external cache,
and 64 MB of physical memory. We allocated 2 GB of each
local disk for virtual memory paging (i.e., swap space). The
size of virtual memory pages is 8 KB. The network for con-
necting these machines is a full-duplex fast Ethernet switch
(100 Mbps).

Program Problem Size Synchronization Exec. Time (sec.)

3D-FFT 2
5
�2

5
�2

5 barriers 10680
MG 64� 64� 64 barriers 2100
SOR 3000� 3000 barriers 8040
Water 1331 molecules locks and barriers 5520

Table 1. Applications’ Characteristics.

In this study, we employed four parallel applications
from different sources as benchmark programs, among
which 3D-FFT and MG are from the NAS benchmark
suite [3], Water from the SPLASH benchmark suite [21],
and SOR from the TreadMarks distribution. These appli-
cations have been selected in several previous studies of
SDSM (e.g., [9, 17, 24]). Table 1 lists application charac-
teristics, including the problem sizes, the synchronization
types, and the execution times on a cluster of eight worksta-
tions with checkpointing and message logging disabled.

5. Experimental Results

5.1 Overhead Per Checkpoint

Table 2 presents overheads of coordinated checkpointing
(per checkpoint, after the first checkpoint) under the sim-
ple coordinated checkpointing (SCC) technique, the incre-
mental coordinated checkpointing (ICC) technique, and our
coherence-based coordinated checkpointing (CCC) tech-
nique during failure-free execution. For each application,
it lists a breakdown of the checkpoint data components and
the checkpoint creation time. Every checkpoint consists of
a shared data segment, a (local) data segment, and a stack
segment. The checkpoint creation time corresponds to the
time used by each process to create a checkpoint in coor-
dination. Note that SDSM creates a checkpoint during its



execution when virtual memory paging and swapping con-
tinue to take place, so our results cannot be compared with
those data gathered by simulating checkpoint creation on an
idle disk.

Coordinated checkpointing techniques provide SDSM
with crash recovery capability, but they involve different
performance penalty amounts. From Table 2, it is appar-
ent that our CCC consistently results in lower failure-free
overhead than other techniques (which create larger check-
points). The checkpoint size is smaller with our CCC than
SCC, by as much as 73% for 3D-FFT, 78% for MG, 97% for
SOR, and 81% for Water. Our CCC also creates a smaller
checkpoint than ICC, by as much as 72% for 3D-FFT, 75%
for MG, 96% for SOR, and 80% for Water. This results
directly from taking advantages of coherence information
existing in SDSM, allowing our CCC technique to identify
data truly necessary for correct recovery. According to co-
herence information, our CCC technique can separate the
address space of diff pools from that of local variables (both
resides in the local data segment), and therefore, it can man-
age to flush diffs and local variables to update the shared
memory pages and local variables, respectively, only from
the latest checkpoint. Without such coherence information,
ICC cannot incrementally checkpoint this portion of pro-
cess address space because it has no permission to write-
protect memory pages for detecting the changes made to a
(local) data segment, and thus a whole (local) data segment
is kept for a checkpoint, leading to an unnecessarily large
checkpoint size. As a result, the checkpoint creation time is
much smaller with our CCC technique (after the first check-
point) than with SCC or ICC. Specifically, our CCC reduces
the checkpointing time overhead from 86% to 98% when
compared with SCC, and from 83% to 96% when compared
with ICC.

Further examination of our experimental results reveals
that the overhead of checkpoint creation corresponds to not
only the checkpoint size but also the placement of data used
for creating a checkpoint. One may easily notice that the
checkpoint sizes of 3D-FFT in Table 2(a) and Water in Ta-
ble 2(d) are not drastically different, but the checkpoint
creation times of these applications differ largely. This is
caused by the fact that most of the (local) data segment
dedicated for the diff pools in 3D-FFT is used for storing
local diffs, whereas the diff pools in Water are mainly des-
ignated for remote diffs. While we have to gather both lo-
cal and remote diffs during checkpoint creation, local diffs
cause much higher overhead than remote ones. This is be-
cause local diffs reside on disk and need to be paged-in for
access by a virtual memory mechanism, whereas remote
diffs are copied directly from the network to local mem-
ory. This side-effect further exaggerates the checkpointing
time overhead of the SCC technique under 3D-FFT since
the paging of local diffs interferes with the placement of

Checkpoint Size Checkpoint
Checkpointing Shared Data Stack Total Creation
Technique Data Segment Segment (MB) Time

(MB) (MB) (KB) (Seconds)

SCC 2.31 50.63 2.42 52.94 109.81
ICC 0.14 50.63 2.42 50.77 76.30
CCC 0.00 14.24 2.42 14.24 5.06

(a) 3D-FFT

Checkpoint Size Checkpoint
Checkpointing Shared Data Stack Total Creation
Technique Data Segment Segment (MB) Time

(MB) (MB) (KB) (Seconds)

SCC 5.20 27.35 2.74 32.55 4.40
ICC 0.68 27.35 2.74 28.03 3.57
CCC 0.00 7.08 2.74 7.08 0.60

(c) MG

Checkpoint Size Checkpoint
Checkpointing Shared Data Stack Total Creation
Technique Data Segment Segment (MB) Time

(MB) (MB) (KB) (Seconds)

SCC 36.09 40.20 2.43 76.29 120.55
ICC 4.52 40.20 2.43 44.72 59.81
CCC 0.00 2.01 2.43 2.01 2.77

(d) SOR

Checkpoint Size Checkpoint
Checkpointing Shared Data Stack Total Creation
Technique Data Segment Segment (MB) Time

(MB) (MB) (KB) (Seconds)

SCC 1.03 47.03 2.56 48.06 22.60
ICC 0.02 47.13 2.56 47.15 22.93
CCC 0.00 9.31 2.56 9.31 0.85

(b) Water

Table 2. Overhead Details under Different
Checkpointing Techniques (per checkpoint).

shared memory pages in local memory (i.e., possibly forc-
ing the OS to page-out some shared memory pages to make
room for local diffs). Hence, checkpointing is much more
complex in SDSM than in message-passing systems, and it
is important to have an efficient coordinated checkpointing
technique that leverages internal coherence information of
SDSM, because such a technique may lower the overhead
significantly during failure-free execution.

Checkpoint Size Checkpoint
Checkpointing Shared Data Stack Total Creation
Technique Data Segment Segment (MB) Time

(MB) (MB) (KB) (Seconds)

SCC 39.56 31.46 2.78 71.02 144.50
ICC 4.32 31.46 2.78 35.78 4.95
CCC 0.00 7.23 2.78 7.23 0.88

Table 3. Overhead Details (per checkpoint) of
MG using Problem Size 128 � 128 � 128.

Another interesting observation is the effect of the prob-
lem size on the overhead of checkpoint creation. For ex-
ample, the checkpoint creation times of MG are far smaller
than those of 3D-FFT, even though their checkpoint sizes
are not drastically different, according to Table 2. This is
because the data set of MG (both shared and local data)
is easily fit in the main memory of our testbed. Note that
while our workstation has 64 MB of memory, only about



one-half of it is available to SDSM and its application, since
the operating systems use anywhere from 23 MB to 40 MB,
depending on the memory pressure. To illustrate the ef-
fect of the problem size on checkpointing overhead, Table 3
shows the overhead details (per checkpoint, after the first
checkpoint) of MG under different coordinated checkpoint-
ing techniques using the problem size of 128� 128� 128.
It is evident from the results that when the data set needed
for checkpoint creation is no longer fit into the main mem-
ory, the overhead of checkpoint creation is increased drasti-
cally. In particular, the checkpoint creation time of MG un-
der SCC jumps from 4.40 seconds to 144.50 seconds when
the problem size grows from 64� 64� 64 to 128� 128�
128, whereas the checkpoint creation times increase mod-
erately under ICC andCCC, as the sets of checkpoint data
still remain within the physical main memory bound.

5.2 Total Execution Time

Figure 2 illustrates the impacts of different coordinated
checkpointing techniques on SDSM performance in terms
of the total execution time (normalized for easy illustra-
tion) under the checkpointing interval of 2 minutes. This
2-minute assumption is very conservative since a longer
checkpoint interval is generally used in practice, and thus,
we actually overestimate the cost of checkpoint creation in
SDSM because longer checkpoint intervals tend to decrease
overheads during failure-free execution. For comparison,
the total execution time of SDSM without any coordinated
checkpointing incorporated serves as the performance base-
line. From the results, our CCC technique leads to negligi-
ble execution time overhead, ranging from 0.5% to 4% only.
This low overhead results directly from a small checkpoint
size. On the contrary, SCC and ICC increase the execution
time drastically on most applications, ranging from 4% to
100% for SCC and from 3% to 64% for ICC. Such high
overheads associated with SCC and ICC are due to check-
pointing excessive amounts of data unnecessarily for cor-
rect recovery of SDSM. Note that the checkpointing over-
heads of MG under SCC and ICC are unusually low since
their data amounts for checkpoint creation are small and fit
into the main memory.

5.3 Checkpoint Restoration Performance

Table 4 shows the cost of checkpoint restoration after
system failures. The process of restoring a globally consis-
tent state of execution of a failed process consists of four
phases, as we explained in Section 3. The overheads come
from not only the disk read operations but also the mem-
ory management operations, since the correct memory pro-
tection mode of each shared memory page and its contents
have to be restored correctly. The experimental results indi-
cate that the cost of recovery is small. This is due to the
fact that the recovery process has an exclusive access to
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Figure 2. Impacts of Checkpointing on Execu-
tion Time (2-minute checkpoint interval).

Checkpoint
Program Checkpoint Size (MB) Restore Time

(Seconds)

3D-FFT 52.94 10.87
MG 32.55 4.73
SOR 76.29 31.18
Water 48.06 5.72

Table 4. Overhead of Checkpoint Restoration.

the disk during crash recovery, reducing disk access latency.
Note that while we may lower checkpoint creation overhead
by limiting information added on to the most recent check-
point, the size of the checkpoint on disk either remains the
same or is enlarged as the address space of SDSM grows.

6. Conclusions

We have proposed an efficient coordinated checkpoint-
ing technique, called coherence-based coordinated check-
pointing (CCC), for SDSM in this paper. The experimen-
tal outcomes demonstrate that our CCC technique with
the checkpointing interval of 2 minutes incurs fairly low
failure-free overhead, roughly 0.5% to 4% of the SDSM
normal execution time, whereas the simple coordinated
checkpointing and the incremental coordinated checkpoint-
ing techniques result in the execution time overhead of
4% to 100% and 3% to 64%, respectively. This is due
to the small checkpoint size under our CCC technique,
which leverages coherence-related information maintained
by SDSM to select data truly necessary for correct recov-
ery. Consequently, SDSM with our CCC technique incor-
porated can recover from system failures much faster due to
a significant savings in the re-computation time. Our CCC
technique makes the implementation of recoverable SDSM
systems feasible and attractive.
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