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Abstract

The probability of failures in software distributed shared
memory (SDSM) increases as the system size grows. This
paper introduces a new, efficient message logging tech-
nique, called the coherence-centric logging (CCL) and re-
covery protocol, for home-based SDSM. Our CCL mini-
mizes failure-free overhead by logging only data necessary
for correct recovery and tolerates high disk access latency
by overlapping disk accesses with coherence-induced com-
munication existing in home-based SDSM, while our recov-
ery reduces the recovery time by prefetching data according
to the future shared memory access patterns, thus eliminat-
ing the memory miss idle penalty during the recovery pro-
cess. To the best of our knowledge, this is the very first work
that considers crash recovery in home-based SDSM.

We have performed experiments on a cluster of eight
SUN Ultra-5 workstations, comparing our CCL against tra-
ditional message logging (ML) by modifying TreadMarks, a
state-of-the-art SDSM system, to support the home-based
protocol and then implementing both our CCL and the ML
protocols in it. The experimental results show that our CCL
protocol consistently outperforms the ML protocol: Our
protocol increases the execution time negligibly, by merely
1% to 6%, during failure-free execution, while the ML pro-
tocol results in the execution time overhead of 9% to 24%
due to its large log size and high disk access latency. Our re-
covery protocol improves the crash recovery speed by 55%
to 84% when compared to re-execution, and it outperforms
ML-recovery by a noticeable margin, ranging from 5% to
18% under parallel applications examined.

1. Introduction

Clusters of workstations, PCs, or SMPs represent cost-
effective platforms for parallel computing. Programming on
such clusters with explicit message exchange, however, is
known to be difficult. Software distributed shared memory
(SDSM) creates a shared memory abstraction (i.e., a coher-
ent global address space) on top of the physically distributed

processing nodes (i.e., processors) to simplify parallel pro-
gramming tasks. While faster processors and higher net-
work bandwidth continue to improve SDSM performance
and scalability, the probability of system failures increases
as the system size grows. This existence of vulnerability is
unacceptable, especially for long-running applications and
high-availability situations. Hence, a mechanism for sup-
porting fast crash recovery in SDSM is indispensable.

Home-based SDSM [18] is one type of SDSM developed
under the notion of relaxed memory consistency model [1].
While it relies on a virtual memory trap as other SDSM
systems [2, 5], home-based SDSM assigns ahomenode for
each shared memory page to collect updates from all writ-
ers of that page. This home node offers some advantages
to SDSM as follows: (i) a read/write to a page on its home
node does not cause any page fault nor requires any sum-
mary of write modifications, (ii) it takes only one round-trip
message to bring a remote copy of any shared memory page
up-to-date, and (iii) no garbage collection is needed. Due to
these advantages, the home-based SDSM protocol has been
a focus of several recent studies [7, 10, 14, 18]. Unfortu-
nately, no prior work has ever been attempted on crash re-
covery in home-based SDSM. This paper is the very first
one to deal with crash recovery in such SDSM.

Message logging is a popular technique for providing
home-lessSDSM with fault-tolerant capability [6, 11, 12,
13, 17]. This technique is attractive because it guaran-
tees bounded rollback-recovery of independent checkpoint-
ing and improves the crash recovery speed of coordinated
checkpointing [8]. While those earlier logging protocols
work well under home-less SDSM, they cannot be applied
to home-based SDSM, where each shared memory page
has a home node at which updates from all writers are
collected. This is because home-less SDSM maintains its
coherence enforcement data differently from home-based
SDSM. Specifically, home-less SDSM always keeps a sum-
mary of modifications made to each shared memory page
(known asdiff), while home-based SDSM creates diffs only
for remote copies of shared memory pages and discards
them after a home copy is updated.



In this paper, we propose a new, efficient logging pro-
tocol, calledcoherence-centriclogging (CCL), for home-
based SDSM. CCL minimizes logging overhead by over-
lapping disk accesses (for flushing) with coherence-induced
communication in home-based SDSM, and by selecting to
record only information indispensable for recovery. To as-
sess the impacts of our CCL protocol on home-based SDSM
performance, we have modified TreadMarks (a state-of-the-
art home-less SDSM) to support the home-based protocol,
with traditional message logging and then with our CCL in-
corporated in it. The experiment has been conducted on a
cluster of eight Sun Ultra-5 workstations. Experimental re-
sults under four parallel applications demonstrate that our
CCL protocol leads to very low failure-free overhead, rang-
ing from 1% to 6% of the normal execution time. For fast
recovery, we also introduce an efficient recovery scheme,
which is specifically tailored for home-based SDSM. Our
recovery scheme reads coherence enforcement data from
the local disk and fetches the updates from the logged data
on remote nodes (i.e., other writers) at the beginning of
each time interval, reducing disk access frequency and elim-
inating the memory miss idle time. Because of these opti-
mization techniques and lighter network traffic during crash
recovery, our scheme shortens the recovery time substan-
tially, ranging from 55% to 84%, when compared with re-
execution.

The outline of this paper is as follows. Section 2 de-
scribes home-based SDSM [18] and its coherence enforce-
ment protocol. Our coherence-centric logging and recov-
ery are proposed in Section 3, along with an overview on
the traditional message logging and its recovery procedure.
Section 4 first states our experimental platform and the par-
allel applications used, and then presents the performance
results of our proposed protocol. Related work is discussed
in Section 5, followed by conclusion in Section 6.

2. Home-Based SDSM

Coherence-centric logging and recovery we propose aim
at home-based SDSM. They take advantage of properties
associated with home-based SDSM to lower failure-free
overhead. In this section, we describe home-based SDSM
and its coherence enforcement protocol, known as home-
based lazy release consistency (HLRC), before explaining
optimization steps adopted by HLRC.

2.1 Overview

SDSM simplifies parallel programming tasks by provid-
ing an illusion of shared memory image to the program-
mers. The implementation of SDSM often relies on virtual
memory page-protection hardware to initiate coherence en-
forcement of a shared memory image, which spans across
memories at the interconnected processors. Such hardware

support is readily available in most, if not all, commod-
ity microprocessors. While versatile and attractive, SDSM
has to minimize its coherence enforcement overhead for
achieving good performance. To this end, the implementa-
tion of SDSM usually adopts a relaxed memory consistency
model [1] because various optimization steps can then be
applied to arrive at efficient SDSM systems.

Release consistency (RC) [1] is one of the least restric-
tive relaxed memory consistency models; it does not guar-
antee that shared memory is consistent all of the time, but
rather it makes sure consistence only after synchronization
operations (i.e., locks and barriers). In essence, RC ensures
a synchronized program to see sequentially consistent ex-
ecution through the use of two synchronization primitives:
acquire for a process to get access to the shared variable,
andreleasefor a process to relinquish an acquired variable,
permitting another process to acquire the variable. In a syn-
chronized program, a process is allowed to use a shared data
only after acquiring it, and the acquired data may then be
accessed and modified before being released (and subse-
quently acquired by another process). Each process also
allows to update a local copy of shared data multiple times,
but all the updates have to be completed before the release
is performed. Home-based SDSM employs a variant of
RC implementations called home-based lazy release consis-
tency (HLRC) [18] and also incorporates several optimiza-
tion steps, as described in sequence below.

2.2 Home-Based Lazy Release Consistency

Home-based lazy release consistency (HLRC) [18] is
among the efficient software implementations of RC. It
assigns a home node for each shared memory page as a
repository of updates from all writers, simplifying memory
management of coherence enforcement mechanism. HLRC
also combines the advantages of write-update and write-
invalidate protocols to make a shared memory page at the
home node (i.e., a home copy) up-to-date at the end of
each writer time interval, and to bring other copies (i.e., re-
mote copies) up-to-date on demands. Specifically, writers
of remote copies flush updates (i.e., a summary of modifi-
cations) to its home node at the end of each time interval
(i.e., via a release operation), updating its home copy. Con-
sequently, no persistent state has to be kept in memory. All
other remote copies are invalidated at the beginning of the
subsequent interval (i.e., by an acquire operation), accord-
ing to the write-invalidation notice piggybacked with a lock
grant or barrier release message. Each remote copy is up-
dated using only a single round-trip message to the home
node, where updates from all writers are collected. Hence,
HLRC minimizes memory consumption for supporting co-
herence enforcement via a write-update protocol and re-
duces coherence-induced traffic via a write-invalidate pro-
tocol, leading to good performance and scalability.



2.3 Optimization

SDSM utilizes the virtual memory trap to invoke coher-
ence enforcement mechanisms, and therefore, coherence
granularity in SDSM is of the OS page size. This coarse-
grain coherence enforcement often leads to a false-sharing
scenario, where several processes request to modify differ-
ent portions of the same shared memory page simultane-
ously, resulting in a thrashing problem or ping-pong effect.
A multiple-writer protocol alleviates this problem by allow-
ing multiple writable copies of a shared memory page to
coexist [5]. This is permissible under the definition of RC,
and the correct execution of a program is guaranteed as long
as it is data-race free. The use of a multiple-writer protocol
optimizes the performance of home-based SDSM. Another
optimization step taken by home-based SDSM is through
diff-based write propagation [5]. It uses the summaries of
modifications (i.e., diffs) for updating the home copy of a
shared memory page, reducing the amount of data transfer
when the write granularity is small.

3. Recoverable Home-Based SDSM

This section first gives an overview on the traditional
message logging protocol and then proposes our coherence-
centric logging and recovery. The proposed logging and re-
covery protocol takes advantage of the properties of home-
based SDSM to yield low overhead. It is the first attempt to
deal with fault tolerance in home-based SDSM.

3.1 Overview on Traditional Message Logging

Message logging (ML) has its root in message-passing
systems [4, 8, 9, 16]. It follows thepiecewise deterministic
system model[16]: A process execution is divided into a se-
quence of deterministic state intervals, each of which starts
at the occurrence of a nondeterministic event like a message
receipt. The execution between nondeterministic events is
completely deterministic. During a failure-free period, each
process periodically saves its execution state in stable stor-
age as a checkpoint, and all messages received are logged
in volatile memory before being flushed to stable storage
whenever the local process has to send a message to another
process. Should a failure occur, the recovery process starts
from the most recent checkpoint and the logged messages
are replayed to reconstruct a consistent state of execution
before the failure. When this traditional ML protocol is ap-
plied to home-based SDSM, it keeps in its local memory
the updates (i.e., diffs) sent from writer processes, the up-
to-date copy of shared memory pages delivered from their
home nodes, and write-invalidation notices. These volatile
logs are flushed to stable storage (i.e., a local disk) at the
subsequent synchronization point. Should a failure occur,
recovery starts from the most recent checkpoint and gener-
ates the execution by replaying the logged data from non-

volatile storage at each synchronization point and at each
memory miss. While this logging protocol is straightfor-
ward to implement and its recovery process is easy to fol-
low, it has high overhead due to its large log size and fre-
quent disk accesses. To make fault-tolerant SDSM more
affordable, we propose in the next subsection a new, effi-
cient coherence-centric logging and recovery protocol for
home-based SDSM.

3.2 Proposed Logging and Recovery

Our coherence-centric logging (CCL) protocol is tightly
integrated into the coherence enforcement protocol em-
ployed by home-based SDSM, namely HLRC (refer to Sec-
tion 2 for details). It records only information indispens-
able to correct recovery, minimizing the amount of logged
data, and overlaps its disk accesses with coherence-induced
communications already present in HLRC, reducing the ad-
verse impacts of high disk access latency. In particular,
CCL keeps in its local disk, the incoming write-invalidation
notices, the records of incoming updates together with a
writer process id number, and the summary of modifica-
tions (i.e., diffs) produced at the end of each time interval.
Diffs are created by comparing locally a remote copy of
a shared memory page with its twin (i.e., a pristine copy
created before a write operation). The disk accesses (i.e.,
flushing operations) are performed during the release opera-
tion (i.e., right after the diffs are sent to the respective home
nodes of pages), overlapping high disk access latency with
inter-process communication. Hence, CCL allows HLRC
to discard a diff as soon as the diff has been applied to its
corresponding home copy, whereas ML needs to keep such
a diff in the memory until the next synchronization point,
where the disk flushing operation will be performed; addi-
tionally, when a page fault occurs at an invalid remote copy,
CCL does not keep a received copy of a shared memory
page that HLRC has fetched from its home node because
such an up-to-date copy can be reconstructed during recov-
ery. As a result, the total log size of CCL is only about
10% of that created by ML, as will be detailed in Section 4.
This log size reduction and the disk access latency-tolerant
technique save both space and time in the logging process,
leading to significant failure-free overhead reduction.

To limit the amount of work that has to be repeated after
a failure, checkpoints are created periodically. A check-
point consists of all local and shared memory contents, the
state of execution, and all internal data structures used by
home-based SDSM. All this information is needed at the
beginning of a crash recovery process to avoid restarting
from the (global) initial state. The first checkpoint flushes
all shared memory pages to stable storage, and then only
those pages that have been modified since the last check-
point will be included in a subsequent checkpoint, reduc-
ing the checkpoint creation overhead. While our logging



protocol allows each process to create its checkpoints in-
dependently and guarantees bounded rollback-recovery, it
is applicable to coordinated checkpointing as well (i.e., the
logged data speed up recovery by eliminating synchroniza-
tion messages and reducing memory miss idle time during
the crash recovery process). The selection of checkpointing
techniques, however, is beyond the scope of this paper.

Recovery
As mentioned earlier, the recovery process starts from

the most recent checkpoint, followed by the execution re-
play of logged data. At the beginning of each time inter-
val, the recovery process fetches the corresponding logs of
updates (i.e., diffs) for its home copy from the writer pro-
cess(es), as provided in the records of incoming updates.
Our recovery brings a remote copy up-to-date by first re-
questing for an up-to-date page from its home node; if such
a page is not available (i.e., a home copy has been advanced
to another time interval by diffs from other writers), a re-
mote copy has to be reconstructed by fetching both the
home copy from the most recent checkpoint of its home
node and logs of updates from the writer process(es), cor-
responding to information provided by the logged write-
invalidation notices. Obviously, in the worst case, the home
node must rollback to the most recent checkpoint in order
to recreate its modification. While it is evident that this
recovery scheme is inspired by our previous work, where
an efficient approach was introduced for crash recovery in
home-less SDSM [11], prefetching is more complicated in
recoverable home-based SDSM than in home-less SDSM.
In particular, prefetching in home-less SDSM simply re-
lies on the diffs and write-invalidation notices maintained
by a coherence enforcement protocol of home-less SDSM,
whereas prefetching in home-based SDSM requires a home
copy, logs of write-invalidation notices, and logs of updates
to reconstruct a remote copy. Despite its higher complex-
ity, our recovery for home-based SDSM substantially im-
proves the crash recovery speed, ranging from 55% to 84%
when compared with re-execution, under all applications
examined. This reduction in recovery time results from the
smaller total log size of CCL, the elimination of page faults,
and lighter traffic over the network during recovery.

Example
Figure 1 shows a snapshot of coherence-centric logging

and recovery in home-based SDSM. In this example, home
nodes of pagesx, y, andz are processesP1, P2, andP3,
respectively. During the failure-free execution,P1 acquires
the lock (for interval A), writes on pagesx, y,andz, and then
releases the lock. At the time of lock release,P1 flushes
diff of pagey to P2 and diff of pagez to P3, following the
HLRC protocol. In addition,P1 also stores those diffs in
its local disk, as required by our CCL. WhenP2 andP3 re-
ceive asynchronous updates (i.e., diffs fromP1), they apply
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Figure 1. A Snapshot of Coherence-Centric
Logging and Recovery in Action.

incoming diffs to their respective home copies and record
this asynchronous update event. Later on,P2 acquires the
lock (for interval B), and invalidates its remote copies of
pagesx and z, according to the write-invalidation notices
piggybacked with a lock grant message. WhenP2 attempts
to write on pagesz andx, it causes virtual memory traps,
which in turn fetch up-to-date copies of pagesz andx from
their home nodes. Accessing pagey onP2 causes no page
fault because the home copy is always valid. At the time of
lock release,P2 flushes diff of pagex toP1 and diff of page
z to P3. It also stores those diffs in its local disk. WhenP1
andP3 receive asynchronous updates (i.e., diffs fromP2),
they apply incoming diffs to their respective home copies
and record this asynchronous update event.

Figure 1(b) assumes thatP2 crashes a certain time after
the volatile logs of this interval are flushed to the local disk,
but before the next checkpoint is created. After a failure
is detected, the recovery process starts from the last check-
point and replays the logged data. During this snapshot in-
terval, the recovery processP2 reads its local logged data
and discovers that it has to update remote copies of pagesx
andz, and that it also receives asynchronous updates from
P1. Consequently,P2 fetches the up-to-date copy of page
z from its home node,P3, and retrieves the up-to-date copy
of pagex along with a diff of pagey from processP1, fol-
lowing our recovery scheme.



3.3 Implementation

Figures 2 and 3 show the procedure of our logging and
recovery for implementing recoverable home-based SDSM.

Lock

During the failure-free execution, a lock release oper-
ation not only creates and then flushes (to the home node)
the summary of modifications, called updates or diffs, made
to shared memory pages during the previous time interval,
but also stores such a summary into its local disk (along
with the write-invalidation notices it received at the begin-
ning of this interval, i.e., at the lock acquire, and the records
of incoming updates from other writers to its home copy).
In essence, on a lock acquire operation, the acquiring pro-
cess sends a message to the lock manager requesting for
the ownership of the lock. When the the lock grant mes-
sage (piggybacked with write-invalidation notices) arrives,
the acquiring process invalidates its remote copies of shared
memory pages accordingly and keeps the write-invalidation
notices in its memory, waiting to be flushed to the local
disk at the subsequent lock release operation. Whenever
the home node receives asynchronous updates from writer
processes, it records the event of such updates (not its con-
tents) in its memory, consisting of the interval number, page
id of a home copy, and the writer process id. At the lock re-
lease, a process flushes its summary of modifications to the
home node(s) of corresponding pages and also stores such a
summary in its local disk, along with the write-invalidation
notices and the records of incoming updates.

Lock Acquire

if (in_recovery)

create twin for each remote copy that will be written in the next

read logs of write-invalidation notices from its local disk;
update home copies with logs of diffs from the writer process(es);
read logs of incoming update events from its local disk;

if (in_recovery)

Asynchronous Update Handler

apply received diffs to home copies;
send an acknowledgement back to the writer process;
records this incoming updates event in memory;
discard those diffs;

reconstruct each remote copy with a home copy from its home node
and logs of diffs from the writer process(es);

time interval;

else
send lock request to lock manager;
wait for lock grant message (piggybacked with write-inv. notices);
invalidate remote copies of pages according to write-inv. notices;

endif

keep those write-invalidation notices in memory;

Lock Release

if (in_recovery)
release the lock;

else
create diffs and flush them to home nodes;

incoming updates events to local disk;
wait for acknowledgements and then discard those diffs;

flush those diffs, write-invalidation notices, and records of

endif

Figure 2. Procedure for Lock Synchronization
in Coherence-Centric Logging and Recovery.

Barrier

if (in_recovery)

update home copies with logs of diffs from the writer process(es);
read logs of write-invalidation notices from its local disk;

read logs of incoming update events from its local disk;

reconstruct each remote copy with a home copy from its home node
and logs of diffs from the writer process(es);

create twin for each remote copy that will be written in the next
time interval;

else

if (barrier_manager)
create diffs and flush them to home nodes;
flush those diffs to local disk;
wait for acknowledgements and then discard those diffs;
wait for all other processes to check in;
invalidate dirty remote copies of pages;

else
create diffs and flush them to home nodes;
flush those diffs to local disk;

send check-in message to barrier manager;
wait for barrier release message;
invalidate dirty remote copies of pages;

endif

endif

wait for acknowledgements and then discard those diffs;

notices to all other processes;
send barrier release message piggybacked with write-inv.

Figure 3. Procedure for Barrier Synchroniza-
tion in Coherence-Centric Logging and Re-
covery.

When a failure is detected, thein recoveryflag is set. On
a lock acquire, the home copy is prepared for the next time
interval by updating itself with logs of diffs retrieved from
the writer process(es), as recorded in the logs of incoming
updates events. To get the correct remote copies of pages
for the next time interval, the recovery process fetches an
up-to-date copy of those pages from their respective home
nodes. Remote copies that need to be updated are identified
by the logs of write-invalidation notices in that time inter-
val. If the home copy is already in a more advanced time
interval (i.e., diffs from other writers have been applied to
the home copy), then the recovery process has to fetch those
diffs from the writer process(es) to reconstruct its remote
copy to the correct time interval before proceeding beyond
the lock acquire.

Barrier
During a failure free period, on arrival at a barrier, each

process that has performed a write operation to shared
memory page(s) creates and flushes to the respective home
node(s) a summary of modifications (i.e., diff) of each re-
mote copy. Such a process also logs those diffs into its lo-
cal disk while waiting for an acknowledgement from each
home node. Upon receiving asynchronous updates from a
remote process, the home node applies received diffs to its
home copy, sends an acknowledgement back to the writer
process, records this incoming updates event, and discards
the diffs. Each process also discards its local diffs af-
ter an acknowledgement has arrived, and sends a check-in
message (piggybacked with the write-invalidation notice)
to the barrier manager. The barrier manager waits until
it received all check-in messages, before invalidates its re-
mote copies of shared memory pages in accordance with the



write-invalidation notice, and then sends back a check-out
message (piggybacked with an up-to-date write-invalidation
notice) to each process, allowing the recipient of a check-
out message to invalidate its remote copies of shared mem-
ory pages accordingly and to proceed beyond the barrier.

When a failure is detected, thein recoveryflag is set.
On arrival at the barrier, the home copy is prepared for the
next time interval by updating itself with logs of diffs re-
trieved from the writer process(es), as recorded in the logs
of incoming update events. To get the correct remote copies
of pages for the next time interval, the recovery process
fetches an up-to-date copy of those pages from their respec-
tive home nodes. The remote copies that need to be up-
dated are identified by the logs of write-invalidation notices
in that time interval. If the home copy is already in a more
advanced time interval (i.e., diffs from other writers have
been applied to the home copy), the recovery process has to
fetch those diffs from the writer process(es) to reconstruct
its remote copy to the correct time interval before proceed-
ing beyond the barrier.

4. Performance Evaluation

In this section, we briefly describe hardware and soft-
ware employed in our experiments and also present the
evaluation results of our proposed protocol for recoverable
home-based SDSM. We first compare the performance re-
sults of our coherence-centric logging (CCL) with those of
traditional message logging (ML). Since the goal is to ex-
amine logging overhead, no checkpoint is taken in our ex-
periments. Subsequently, we evaluate and contrast the crash
recovery speeds of our recovery and ML-recovery.

4.1 Experiment Setup

Our experimental platform is a collection of eight Sun
Ultra-5 workstations running Solaris version 2.6. Each
workstation contains a 270 MHz UltraSPARC-IIi processor,
256 KB of external cache, and 64 MB of physical memory.
These machines are connected via a fast Ethernet (of 100
Mbps) switch. We allocated 2 GB of the local disk at each
workstation for virtual memory paging and left 1.2 GB of
local disk space available for logged data.

Program Data Set Size Synchronization

3D-FFT 100 iterations on27�27�27 data barriers
MG 200 iterations on27�27�27 grid barriers
Shallow 5000 iterations on250002 barriers
Water 120 iterations on 512 molecules locks and barriers

Table 1. Applications’ Characteristics.

We modified TreadMarks [2] to support the HLRC pro-
tocol [18], and then incorporated our proposed logging and
crash recovery for quantitative evaluation. For measuring
the failure-free overhead and the crash recovery speed, four

parallel applications were used in our experiments, includ-
ing 3D-FFT, MG, Shallow, and Water. 3D-FFT and MG
are originally from the NAS benchmark suite [3], with the
former computing the 3-Dimensional Fast Fourier Trans-
form, and the latter solving the Poisson problem on a multi-
grid. Shallow is a weather prediction kernel from NCAR,
and Water is a molecular dynamics simulation from the
SPLASH benchmark suite [15]. The data set size and the
synchronization type of each application used in this exper-
imental study are listed in Table 1.

4.2 Performance Results of Logging Protocols

Table 2 presents the failure-free overhead of different
logging protocols. It lists total execution time, the mean log
size, the total log size, and the number of times the volatile
logs are flushed to stable storage. Since no logging exists in
the home-based TreadMarks, its execution time serves as a
performance baseline. Both our coherence-centric logging
(CCL) and traditional message logging (ML) protocols pro-
vide home-based SDSM with crash recovery capabilities,
but they involve different performance penalty amounts.

Logging Execution Mean Log Total Log # of
Protocol Time (sec.) Size (KB) Size (MB) Flushes

None 363.24 - - -
ML 450.36 1760 359 204
CCL 385.14 221 45 204

(a) 3D-FFT

Logging Execution Mean Log Total Log # of
Protocol Time (sec.) Size (KB) Size (MB) Flushes

None 300.96 - - -
ML 354.56 43 276 6404
CCL 307.10 4 24 6404

(b) MG

Logging Execution Mean Log Total Log # of
Protocol Time (sec.) Size (KB) Size (MB) Flushes

None 744.33 - - -
ML 848.60 29 865 30000
CCL 765.22 2.4 71 30000

(c) Shallow

Logging Execution Mean Log Total Log # of
Protocol Time (sec.) Size (KB) Size (MB) Flushes

None 139.64 - - -
ML 152.27 1.1 44 38842
CCL 141.60 0.05 2 38842

(d) Water

Table 2. Overhead Details under Different
Logging Protocols.

From Table 2, it is apparent that our CCL consistently
results in lower failure-free overhead than ML, which in-
duces a larger mean log size and is affected significantly by
high disk access latency. CCL keeps a far less amount of
logged data because it stores only coherence-related infor-
mation that cannot be retrieved or recreated after a failure,
whereas ML simply records all incoming messages. Con-
sequently, the total log size of our protocol is only a small
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Figure 4. Impacts of Logging Protocols on Ex-
ecution Time.

fraction of that of the ML protocol; namely, it is only 12.5%
for 3D-FFT, 8.7% for MG, 8.2% for Shallow, and 4.5% for
Water. A larger mean log size of ML also increases the disk
access time during flushing operations, lengthening the crit-
ical path of program execution and hampering home-based
SDSM performance. To minimize the adverse impact of
disk access latency, our CCLoverlapsflushing operations
with coherence-induced communication already existing in
home-based SDSM. Figure 4 depicts the impacts of differ-
ent logging protocols on home-based SDSM performance
using the normalized execution time. It demonstrates that
our CCL protocol adds very little overhead to execution
time, ranging from 1% to 6%. This low overhead results
directly from a small log size and our disk access latency-
tolerant technique. By contrast, ML increases the execution
time by as much as 24% for 3D-FFT, 18% for MG, 14% for
Shallow, and 9% for Water; it directly corresponds to the
large mean log size and high disk access latency.

4.3 Performance Results of Crash Recovery

Since there is no crash recovery protocol incorporated in
the original home-based TreadMarks, should a failure oc-
cur, it has to restart from the (global) initial state without
any logged data for execution replay. As a result, it spends
the same amount of time for re-executing the program with
no time saving. This normal execution time is employed as
a baseline for crash recovery performance comparison. Un-
der our crash recovery scheme, the recovery time is short-
ened substantially when compared with re-execution, by as
much as 84% for 3D-FFT, 73% for MG, 55% for Shallow,
and 62% for Water (see Figure 5). This directly results from
the avoidance of page fault via prefetching in our recovery
scheme, the minimized disk access time due to a small mean
log size of CCL, and lighter traffic over the networks dur-
ing recovery. On the other hand, message logging recovery
(ML-recovery) eliminates the need of message transmis-
sion, but suffers from memory miss idle time and high disk
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access latency in reading large logged data, which lengthen
the recovery time. From Figure 5, ML-recovery leads to
recovery time reduction of 66% for 3D-FFT, 58% for MG,
43% for Shallow, and 57% for Water, in comparison with re-
execution. Hence, our recovery scheme outperforms ML-
recovery by a noticeable margin, ranging from 5% to 18%
under parallel applications examined.

5. Related Work

The study of message logging for SDSM was attempted
first by Richard and Singhal [13]. They considered logging
and independent checkpointing protocols for sequentially
consistent home-less SDSM. Their logging protocol logs
the contents of all shared memory accesses and causes high
overhead due to a large log size and high disk access fre-
quency. Suri, Janssens, and Fuchs [17] reduced the over-
head of that protocol by logging only the records of all
shared memory accesses, instead of their contents. They
also proposed a logging protocol for home-less SDSM un-
der relaxed memory consistency models [17], realized by
logging all coherence-related messages in volatile mem-
ory and flushing them to stable storage before communi-
cating with another process. This protocol, however, suf-
fers from communication-induced accesses to stable stor-
age. Costaet al. introduced a vector clock logging pro-
tocol [6], based upon the idea of sender-based message
logging protocols [9], in which the logged data are kept
in volatile memory of the sender process. Unfortunately,
the protocol cannot handle multiple-node failures. Park and
Yeom [12] described a logging protocol known as reduced-
stable logging (RSL), obtained through refining the proto-
col proposed in [17] by logging only the content of lock
grant messages, i.e., the list of dirty pages. Their simulation
results indicated that RSL utilized less disk space for the
logged data than that of [17]. Recently, a superior logging
protocol, dubbed lazy logging, which significantly reduces
the log size and the number of accesses to stable storage,
has been devised [11]. Experimental results have shown
that lazy logging induces lower execution overhead than



RSL. While these earlier logging protocols work well for
home-less SDSM under relaxed memory consistency mod-
els, they do not recognize the notion of home node and can-
not be applied efficiently to home-based SDSM. Our new,
efficient coherence-centric logging and recovery protocol is
the first one to deal with logging and recovery for home-
based SDSM. Its experimental results have been gathered,
demonstrated, and discussed in Section 4.

6. Conclusions

We have proposed a new, efficient logging and recovery
protocol for recoverable home-based SDSM implementa-
tion in this paper. The experiment outcomes reveal that our
coherence-centric logging protocol incurs very low failure-
free overhead, roughly 1% to 6% of the normal execution
time, and that our crash recovery scheme improves crash
recovery speed by 55% to 84% when compared with re-
execution. This results directly from our coherence-centric
logging, which keeps only information necessary for recov-
ery to a consistent execution state, and from our disk access
latency-tolerant technique, which overlaps the disk flush-
ing operation with inter-process communication. Our pro-
posed recovery scheme totally eliminates the memory miss
idle time and obviates the need of memory invalidation by
prefetching up-to-date data before they are to be accessed
in a subsequent time interval, therefore giving rise to fast
crash recovery. Our coherence-centric logging and recov-
ery is readily applicable to arrive at recoverable home-based
SDSM systems effectively.
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