
Distributed Shared Memory Systems with
Improved Barrier Synchronization and Data Transfer

Nian-Feng Tzeng and Angkul Kongmunvattana

Center for Advanced Computer Studies
University of Southwestern Louisiana

Lafayette, LA 70504

Abstract

This paper introduces an efficient barrier synchroniza-
tion algorithm based on the binomial spanning tree
(BST) and proposes a data transfer reduction technique
for distributed shared memory systems under release
consistency. The introduced BST-based barrier algo-
rithm parallelizes and distributes the workload amongs
participating processors, alleviating network contention
and yielding less retransmission. As a result, perfor-
mance improves, and the degree of improvement in-
creases quickly as the number of participants grows.

Our barrier algorithm and data transfer reduction tech-
nique are incorporated in TreadMarks for evaluation us-
ing various benchmarks on a network of workstations
and the IBM SP machine. Experimental results are
gathered and demonstrated.

1 Introduct ion

Distributed memory systems usually exhibit poor pro-
grammability and portability, because all data parti-
tioning and explicit communication must be done by the
programmer. The distributed shared memory (DSM)
has emerged to overcome this difficulty by providing a
global, single address space on top of physically dis-
tributed memory systems. DSM combines the ease of
shared memory programming paradigm with the scal-
ability and constructability of distributed memory sys-
tems, such as the network of workstations (NOW) and
distributed memory multiprocessors. Due to its poten-
tial advantages, DSM has been an active research area,
with many prototype systems implemented and demon-
strated [ll, 131.

The address space of a DSM system is distributed
across memories at interconnected processors. To re-
duce traffic over the network, a replication of certain
data stored at a remote processor is usually created in
the local cache of a processor. Multiple copies of data,

F’ermission to make digital.lllhnrd copin of all or pars ofthis material for
PemOnd or classroom use is granted withoul fee provided that the copies

are not made or distributed for profit or commercial advantage, the copy
right notice, the title ofthe publication and its date appear, and notice is
given that copyright is by permkion of the ACM, Inc. TO copy otherwise,
lo republish, to posl on sewers or IO redistribute to IisLq, requires specific
permission and/or fee

KC; 97 Vienna Austria
Copyright 1997 ACM O-89791-902-5/97#..$3.50

while improving read performance, pose the need of co-
herence enforcement, which can be achieved through
hardware, software, or a combination of the two [13].
Apparently, the software implementation is most attrac-
tive since it involves no added hardware, which tends to
be machine-dependent and expensive. The data trans-
fer due to coherent enforcement under a software im-
plementation, however, has to be minimized. To this
end, the release consistency (RC) model [5] is a pre-
ferred choice for a software DSM implementation due to
its low coherence traffic. RC does not guarantee that
shared memory is consistent all of the time, but rather
making sure consistence only after synchronization op-
erations. This naturally results in lower communication
traffic due to coherence than a more restrictive memory
consistency model, such as sequential consistency.

Barrier synchronization is a common and powerful
primitive for synchronizing a large number of cooperat-
ing processors in a parallel system. It ensures all par-
ticipating processors to reach a certain execution point
before they may proceed beyond that point. Many pa-
pers on barrier synchronization have appeared in the
literature [4, 6, 7, 10, 121, but none of them considered
the particular need of the DSM system. Specifically,
for software DSM systems under the release consistency
model, barrier synchronization not only makes sure the
arrival of all participants but also enforces memory con-
sistency when they leave the barrier. As a result, all up-
dates carried out by other processors have to be known
or performed accordingly by a given processor at the
barrier to guarantee coherence. Generally, different pro-
cessors get different sets of updates. This makes it nec-
essary for the DSM system under release consistency to
“scatter” updates to all participants during barrier syn-
chronization, as opposed to a simpler broadcast opera-
tion needed for shared-memory systems. We introduce
and evaluate a binomial spanning tree-based algorithm
for an efficient barrier implementation in this paper.

Memory initialization for TreadMarks is not always
in a desirable manner, and excessive cold misses often
result during the run time of an application. These cold
misses cause a lot of unnecessary data transfer, which
tends to hamper performance, in particular for those
applications with short execution times. This is be-
cause a software DSM system, like TreadMarks, is very

148

sensitive to the amount of data exchanged in creating
the shared memory abstraction. In this paper, we pro-

pose a simple technique which effectively avoids many
cold misses, leading to improved performance.

2 Pertinent Background

In implementing the DSM system, various memory con-
sistency models have been adopted. A less restrictive
model tends to yield higher efficiency, because it nor-

mally imposes a shorter memory access latency and in-
curs lower communication overhead caused by memory

coherence enforcement.

2.1 Release consistency

Release consistency (RC) [5] is one of the least restric-
tive memory consistency models, and it ensures a syn-
chronized program to see a sequentially consistent ex-
ecution through the use of two synchronization opera-
tions: acquire for a processor to get access to a shared

variable, and release for a processor to relinquish an ac-

quired variable, permitting another processor to acquire
the variable. In a synchronized program, a processor is
allowed to use a shared data only after acquiring it,
and the acquired data may then be accessed and mod-
ified before being released (and subsequently acquired
by another processor). Multiple updates on shared data
are allowed locally by different processors, but all the
updates have to be completed at any release following

those updates.

An eager software implementation of release consis-
tency can be found in Munin [3], where a processor de-
lays propagating its updates of shared data until the ex-
ecution of a release. Later on, a lazy release consistency
(LRC) was considered [9], in an attempt to further
postpone the propagation of updates until the acquire
(to the shared data made by another processor). It has
been demonstrated that LRC generally outperforms ea-
ger release consistency, with respect to the number of

messages and the amount of data exchanged [9]. In
this paper, we are interested in DSM systems under the
release consistency model.

2.2 Barrier Synchronization

The barrier is a synchronization primitive for parallel
computing. A participant of barrier synchronization
typically involves three actions during each barrier: (1)
posting its arrival at the barrier, (2) waiting for all other

participating processors to reach the barrier, and (3)
receiving a notification to proceed beyond the barrier.
Early studies on barrier synchronization have focused
on the use of specific synchronization hardware [7, lo],
on the software implementation of synchronization algo-
rithms [6, 121, or on the evaluation of barrier synchro-

nization performance [4]. Those studies all deal with
barrier synchronization in which action (3) is satisfied
simply through a broadcast operation (or mechanism)

to all participating processors. Under RC model, bar-

rier synchronization provides coherent views of shared
pages after the barrier. Every participant thus has to
receive a message which contains update information
needed for it to perform coherence enforcement when
exiting from the barrier. Update information for every
participant is generally distinct and is computed accord-
ing to the update records gathered from all the arriving

processors. As a result, the barrier under release consis-
tency involves a “scatter” operation to forward different
update information to different participants.

2.3 TreadMarks

%ea.dMarks [2] is a software DSM implementation un-
der the LRC model, and our investigation is based on
the TreadMarks framework. Each barrier in Tread-

Marks is associated with a processor, called the barrier

manager, responsible for recording the arrival of proces-

sors and for notifying every involved processor as soon
as the barrier is satisfied, using a message which con-
tains the write-notice (i.e., update information) for the
processor. Consider, for example, that processor 0 (de-
noted by PO) is the manager of a given barrier. When a
processor reaches the barrier, it sends its write-notice to
PO and waits for a response from PO. After all processors
arrive at the barrier, PO gathers all the write-notices,

and it then starts to create and sent a write-notice to

each participant in sequence; notifying them to proceed
beyond the barrier. In this case, PO may easily become
the performance bottleneck, especially when the num-
ber of participants grows.

Interprocessor channels are established by means of
the UDP/IP communication protocol, which is connec-
tionless and fails to guarantee reliable message delivery.
In the presence of contention, a message may be lost
if an arriving message is handled by an interrupt ser-
vice routine because the arrival of a message will not

cause any interrupt, if an earlier arrived message is still
processed by the interrupt service routine. Hence, a
timeout mechanism is adopted to protect against un-
successful message delivery. For example, after sending
out its update record, a participant sets its clock and
waits for a response. If the clock goes off before a re-
sponse is received, the participant retransmits its up-
date record and resets its clock. This process repeats
until a response arrives. Retransmission as a result of

this tends to decrease system performance considerably.

Memory Initialization

Memory management in TreadMarks is implemented
using the OS segment violation (SIGSEGV) interrupt.

149

This system interrupt is handled by the service routine
provided by TreadMarks, with the action in the routine
determined by the cause of the interrupt and the cur-
rent status of the memory page. The page status can be
either valid or invalid, and can be either empty or non-
empty. Also, each of the page sets its access mode to be
read-only, read-write, or inaccessible, based on the sta-

tus of the page. Therefore, OS generates an interrupt

when invoking coherent activities is necessary.
In TreadMarks, every processor, except PO, initial-

izes all of its pages with the empty and invalid status;
those pages are all set to the inaccessible mode. All
pages in Pe, however, are set to the non-empty and valid
status. Moreover, every byte of each mapped page in PO
is initialized with zero, using a memset operation. As
a result, all processors, except PO, will experience cold

misses when they fetch their local pages for the very

first time. A cold miss is trapped by the OS and han-
dled by an interrupt service routine. In this case, the
service routine sends a request to PO, asking for a copy
of the page that causes an interrupt. In response, the
whole page is transmitted over the network. A cold miss
thus results in a large amount of data transferred, and
the transmitted page often contains only zero values.
A technique is presented later to reduce substantially
data transfer due to cold misses.

3 Proposed Barrier Synchronization

As mentioned earlier, barrier synchronization under re-
lease consistency requires a “scatter” operation to de-
liver separate memory update data to all barrier par-
ticipants, so that global memory coherence is enforced
after leaving the barrier. A trivial barrier implemen-
tation, as found in TreadMarks, tends to create seri-
ous contention at the barrier manager and significant

retransmission due to the message loss or the expira-
tion of a waiting interval (for the response) in moderate
and large systems. If the system size grows, an ineffi-
cient barrier implementation soon becomes the system
performance bottleneck as a result of excessive barrier
trafhc overhead. This phenomenon indeed has been ob-

served for the system size larger than 16 under certain
benchmarks, as will be detailed in Section 5.

3.1 Approach

In contrast to designating a single processor for collect-
ing update records, for calculating the update result
for each participant and for scattering calculated up-
date results to all participants in sequence, we propose

an efficient barrier approach on the basis of a binomial
spanning tree (BST) [8]. This BST-based barrier ap-
proach is found to be superior to other tree-based (such
as the binary tree and other unbalanced trees) barrier

Level

0

1

2

3

._--__-___-_--a

Figure 1: A binomial spanning tree (BST) of size 8.

schemes. A BST with four levels is illustrated in Figure
1, where the root is at level 0, its children are at level

1, and so on. This BST involves 8 nodes and the node

degree ranges from 0 to 3, with one node having the
degree of 3, one node having the degree of 2, and two
(or four) nodes having the degree of 1 (or 0). In gen-
eral, for a BST of 2” nodes, one node is of degree n, one
node is of degree n-l, and 2i-’ nodes are of degree n-i,
1 < i 5 n. A subtree rooted at any node with degree
j is referred to as ST,-j, 0 5 j 5 n. In Figure 1, for
example, the subtree rooted at node 001 (whose degree
is 2) is ST1 (for its subscript = 3-2), as enclosed in the
dashed box. The subtree rooted at node 0 equals the

whole tree, denoted by STo.
Nodes involved in a barrier are not necessarily con-

tiguous, and the number of involved nodes is not always
a power of 2. To facilitate our barrier implementation,
the id’s of all involved nodes are mapped to distinct
logical id’s ranging from 0 to N-l, where N is the to-
tal number of participants. A BST is constructed ac-
cording to the logical id’s of participants. Let a logical
id (or id for short) be represented by a binary string

b,b,-l...bzbl, where n is the smallest integer satisfy-
ing N 5 2”. Consider an STk (Ic > 0) and its parent
node P in a constructed BST. If node P is addressed

by b,,...bk+lbkbk-l...bl, then bk = 0 and the root of ST.
is addressed by b,,...bk+l lbk-1 . ..bl. Additionally, the
address of every node in STk, an...ak+lakak-l...al, sat-
isfies ok = 1 and ai = bi for all 1 5 i < k. In other

words, the addresses of all the nodes in STk (including
its root) have their rightmost k bits in common. This

can be observed in Figure 1, where the addresses of all
nodes in ST1 have their rightmost bits in common. A
formal definition of the BST is provided in [8]. In fact,
a BST possesses above properties for any arbitrary N.
The BST of size 10 is depicted in Figure 2 with solid
lines, and it is easy to validate the properties for this
BST. There are two ST*% in the BST of size 10, as op-

posed to eight STd’s in the BST of size 16 (shown by
both solid and dotted lines in Figure 2).

Two of the three actions involved during each barrier
benefit substantially from our proposed BST-based ap-

150

Level

,,I,*. .’
..I

4

Figure 2: A BST of size 10 (shown by solid lines) and

of size 16 (shown by both solid and dotted lines).

preach, i.e., posting arrivals at the barrier and prepar-
ing/sending release notification messages. In our bar-
rier approach, a node, on reaching the barrier, does not
send a message to notify its arrival at the barrier until
its children all have reached the barrier. Every node
sends a message (which also contains the memory up-
date record) to its immediate parent to post its arrival
at the barrier. This is similar in concept to the soft-

ware combining technique described earlier in [14]. As
a result, any node in a system with N participants will
receive at most n such messages, where n is the smallest
integer satisfying N 5 2”. Specifically, the root of any
STj receives exactly n - j such messages. If a shared
medium (such as the Ethernet) is used for interconnect-
ing nodes, there will be no more than N/2 participants
competing for the medium initially with our approach,

in contrast to N when a node is allowed to send its

message off as soon as it reaches the barrier. This po-
tential reduction in the degree of medium contention
translates to a possible decrease in the number of mes-
sages retransmitted. In addition, since the node degree
is limited to n, the probability of a message arriving
during the interval when an earlier arrived message is
still being processed (by an interrupt service routine) is
significantly reduced, in comparison with the situation
where the node degree is bounded by N. If a message
arrives during such an interval, the message tends to

be lost (since the interrupt is usually masked out dur-
ing that interval), causing retransmission. As a result,
our BST-based approach often lowers the chances of
message retransmission considerably, in particular for a
moderate or large N. This holds true for both shared
and non-shared interconnecting media.

The third action of a barrier embraces preparing and

sending distinct messages to all participants, as soon as
the last processor reaches the barrier, to notify them
to proceed beyond the barrier. This is referred to as
the barrier release process, which is realized by a scat-
ter operation under the release consistency model. The

release process starts from the barrier manager (i.e.,
the BST root), which maintains all the memory update
records. The BST-based approach minimizes the re-
lease process time, by allowing maximum possible par-

allelism in calculating the update results for all partic-
ipants. Specifically, the BST root produces the cumu-

lative update result for ST1 and then sends the update
result to the root of STl, denoted by Root(STl), during
step 1. At step 2, the BST root produces the cumulative
update result for ST& while Root(STl) calculates the
update result for another ST2 according to the received
update result during step 1. These two update results
are then sent respectively to the two Root(ST2)‘s. In
general, 2j-’ nodes are involved in calculating separate

update results for all the STj’s simultaneously during

step j. It takes n steps to complete the release of N
(5 2n) participants and that is optimal.

Our BST-based approach exhibits substantial per-
formance improvement, when compared with the use of
a single node for handling the barrier (like that found in
TreadMarks). This implementation, however, may lead
to a larger amount of data movement, because memory

update records are accumulated at a parent node before
forwarding upwards (and eventually reaching the BST

root), and also cumulative update results are passed
along to the root of a subtree during the release pro-
cess. According to our measured results, the amount
increase is negligible (less than 1%) for an Ethernet-
based NOW of size 8, and it ranges from 7% to 24% for
a distributed-memory parallel machine of size up to 32.
However, the advantage resulting from retransmission
reduction and parallelized computation/communication
associated with our barrier approach well offsets the im-

pact due to this increase, as will be demonstrated in
Section 5.

3.2 Algorithm

Our algorithm starts with assigning distinct logical id’s,
0, 1, . ..) N - 1, to participating processors, with 0 always
assigned to the root node, i.e., the barrier manager.
Each processor then determines the id’s of its parent
and its children (if any), according to its assigned id,

say id,,, for the construction of the BST. Specifically,
the parent of id,, is obtained by resetting the leftmost
bit “1” in the binary representation of id,,. On the
other hand, the child(ren) of id,, is (are) computed
by adding 2’ to id,,, where i satisfies Zogz(id,,,,) <
i < [logz(N)l. If there are multiple i’s satisfying the
above inequality and the added result (i.e., id,, + 2’) is
smaller than N, node id,, has multiple children. Each

node determines its parent and child(ren) during the

initialization phase in the algorithm given below.
Upon arrival at the barrier, a processor waits for

the check-in message(s) from its child(ren) to arrive be-
fore sending its update record to its parent. All update

151

4 Performance Evaluation on NOW

tsj+GJy
Table 1: Benchmark Programs.

records from its children are combined together with
its own update record into a single cumulative update

record, which is then sent to its parent. This is called
the check-in phase in the following algorithm. After
checking in, a processor waits for a release message from
its parent. The release phase is initiated by the root, im-
mediately after it has received check-in messages from

all its children. A release message is produced and sent
to one of its children at a time in sequence. On receiv-

ing a release message from its parent, a node starts to
generate release messages for its children one by one, as
stated in the release phase of the algorithm below. It
takes at most [logz(N)l steps to complete the barrier
release process, an optimum result.

Algorithm: MT-based barrier algorithm

Initialization Phase

Assign distinct id numbers to all N participating processors.
If (processor id == 0)

Determine its children
Else

Determine its parent and its children (if any)
EndIf

Check - in Phase
If it has any child

Wait until all of its children to arrive at the barrier
Accumulate update records from its children, then combine

them with its own update record
If (processor id != 0)

Send the cumulative update record to its parent processor
EndIf

Else
Generate and send the update record to its parent processor

EndIf

Release Phase

If (processor id == 0)
Generate and send release messages with distinct update

information to its children in sequence
Else

Wait for the release message from its parent
Incorporate received update information in its data pages
If it has any child

Generate and send release messages with distinct update
information to its children in sequence

EndIf

EndIf

We evaluate the performance of our proposed barrier
synchronization by incorporating it in TreadMarks ver-
sion 0.9.7, with the remaining TreadMarks codes kept
unchanged. The problem sizes and the type of synchro-
nization of benchmarks used are listed in Table 1.

4.1 Results and Discussion

The experimental results of the proposed barrier ap-
proach on a network of eight SUN workstations model
SPARCstation2 running SunOS version 4.1.4 is pre
sented in Table 2, Figure 3 and Figure 4. All the re-
sults are based on 30 independent runs, with an approx-
imate 95% confidence interval for each provided value
equal to the value f 2%. Table 2 lists the total amount

of data movement and the total number of messages
passed over the network, which together reflect traffic
due to data exchange and memory coherence enforce-
ment during execution. The numbers of retransmitted
messages given in the table indicate the degree of net-
work contention and, consequently, the amount of mes-
sages lost during barrier operations. Our proposed bar-
rier approach, when incorporated in TreadMarks, leads
to noticeable reduction in the number of retransmitted

check-in messages for 3D-FFT and Barnes benchmarks,
as can be observed in those Ours(l) rows, because the

total numbers of messages for the two benchmarks are

large originally. Our proposed barrier approach allevi-
ates the degree of network contention, thereby leading
to a reduced number of retransmission.

The average barrier times (i.e., the average comple-
tion time per barrier) for the four benchmarks are de-
picted in Figure 3. The proposed barrier approach re-
duces the average barrier time in 3D-FFT by 21%, but
achieves only 7%, 4.5%, and 8% reduction in Barnes,

SOR, and Jacobi benchmarks, respectively (according
to the Ours(l) bars). The percentage of barrier time
reduction signifies the potential run time savings, as a
result of our barrier approach. Because of a small sized
NOW used, the number of retransmitted messages in
the original TreadMarks is rather low (see Table 2).
The proposed barrier approach can reduce only a few
retransmissions for JD-FFT and Barnes, but the total
numbers of messages remain roughly the same as those
in the original TreadMarks. For the other two applica-
tions, since the degrees of contention over the network
are low (due to fewer total messages, as listed in Table
2) originally in TreadMarks, the proposed barrier ap-
proach does not lower the total numbers of messages,
resulting in smaller amounts of barrier time reduction.
While the amount of data movement is expected to be

higher when our barrier approach is incorporated as
mentioned earlier, the increased amount is always neg-
ligible (i.e., < 1%) for any benchmark studied, as far as

152

TlYdMU*1 5110 3311 0 0 1253

Jacabi Outil) 5149 3311 0 0 1253

Ours(Z) II 2% 0 0 0

Ours(t). proporcd hamcr appach incorpwaled

Ours(Z): proposed harrier approach and data tnnrfer rcductton tshniquc ~ncorporati

Table 2: Experimental results on NOW of size 8.

a system size of 8 is concerned. The degree of run time

reduction due to the proposed barrier approach is not
significant for every benchmark on NOW of size 8, as
can be observed in Figure 4.

4.2 Data Transfer Reduction Technique

As mentioned earlier, the cold misses invoked by all
processors but PO result in excessive data transfer over
the network, jeopardizing performance. Next, we intro-

duces a technique for overcoming this problem.

4.2.1 Technique

To eliminate cold misses, we propose to reset every byte
of the mapped pages in each processor to zero during
the initialization process (rather than leaving it empty
and invalid). This initialization can be done by every

processor individually using the memset operation and
it does not increase any initialization time, because it

can be done in parallel and at the same time when Pe is
carrying out its initialization. Every processor thus ini-
tializes all of its local pages with the non-empty status
(rather than the empty status). In order to maintain
memory coherence, only those pages in I’s obtain the
valid status while the pages in any other processor are
still invalid. As a result, every processor, except PO, ex-
periences initially a miss that costs only the transfer of

updated data (represented in the form of “diff”). The
size of updated data is often much smaller than that

of pages. A considerable amount of data transfer may
thus be saved as a result of our proposed technique.

This implementation requires modifications in two
program modules: page and heap initialization of Tread-
Marks. While the changes are very limited, noticeable
performance improvement results, in particular when
an application largely shares the memory pages but
rarely shares the same set of data or variables. For
such an application, the barrier typically serves as key

700-

650 -

6oc

550 -

500 -

3 450 -

8 400-

i 350 -

i@ II-
.:

$ zoo-
m

HO-

100 -

50 -

0 I

-:
; I

n TreadMarks

; :
cl 0urst1)

0 ! ! : Ours(2) i

750 I

3D-FIT Barnes SOR Jacobi

Figure 3: Average barrier time on NOW of size 8.

synchronization and significant reduction in data trans-
fer is common. Moreover, the degree of improvement is
boosted if each processor uses its local pages extensively

during the run time. We have gathered the execution
results of four benchmark codes executed under both
original TreadMarks and modified TreadMarks on an
Ethernet-based NOW system. Collected results are il-
lustrated and discussed next.

4.2.2 Results and Discussion

The proposed barrier approach and our modification to

memory initialization together lead to noticeable perfor-
mance improvement when incorporated in TreadMarks,
represented as Ours(2) in Table 2 and Figures 3 -
4. According to the experimental results listed in the
table, our memory initialization technique reduces the
total amount of data transfer by as much as 96% for
SOR and Jacobi benchmarks, but achieves only 25%
reduction for 3D-FFT and 11% for Barnes-Hut codes.
The percentage of data transfer reduction indicates the
level of decreased traffic possibly during run time, as a

result of our memory initialization.
3D-FFT has the largest amount of data transfer due

to cold misses, and our modification eliminates all the
cold misses (see Table 2). The percentage of data trans-
fer reduction, however, is not as high as SOR and Jacobi
because some parts in most of the memory pages for 3D-
FFT are shared by processors. Our modification thus
leads to nearly the same number of diffs transmitted as
the cold misses for SD-FFT, but the diff size is much

smaller than the page size.

153

H TreadMarks

cl ours(l)

! : ours(Z)

”

JD-FFT Barnes SOR Jacobi

Figure 4: Run time on NOW of size 8.

Barnes has the fewest cold misses (i.e., only 1071
from Table 2), and therefore the percentage of data
transfer reduction is not high. Moreover, the cold misses

that happen after the storage reclamation routine is per-
formed, is unavoidable. This routine cleans up all the
write-notice records, twins, and diffs. Naturally, many
cold misses occur thereafter.

SOR and Jacobi benchmarks exhibit high reduction
ratios because they have relatively small amounts of
data transmitted and many cold misses originally, as
can be seen in Table 2. These cold misses occurred
when processors use a scratch array to store the new
values computed during each iteration, as mentioned
earlier. The scratch array is allocated on the pages that

are never used by any processor, including Pe. There-
fore, the cold misses in the original TreadMarks cause
Pe to transmit the pages that contain only the zero val-
ues, but our modification eliminates such transmission
altogether.

This reduction in data transfer translates to a de-
creased run time of the benchmarks, as illustrated in

Figure 4. Specifically, 3D-FFT enjoys run time reduc-
tion by ll%, Barnes by lo%, SOR by 38%, and Jacobi

by 37%. As expected, the degree of reduction corre-
sponds to the amount of data transfer reduction.

5 Performance Evaluation on IBM SP

In order to evaluate the behavior of our proposed barrier
approach in a larger system, we used the IBM SP ma-

chine [l] at Argonne National Laboratory as a hardware
platform for study. The same set of four benchmarks
is executed on this SP machine with TreadMarks em-
ployed. When the proposed barrier approach is incorpo-
rated, all the codes, except the barrier implementation,
are kept unchanged, as before. The data transfer re-
duction technique presented earlier is not included in
the study of this SP machine. The number of partici-

Ours4 I): propped barrier approach incwporated

Table 3: Experimental results on IBM SP machine.

pants for SD-FFT, SOR, and Jacobi is 32, but that for
Barnes is only 18. Due to an excessive number of mes-
sages present in Barnes, the original TreadMarks never
terminated successfully when the system size went be-
yond 18, whereas modified TreadMarks with our barrier
incorporated still terminated successfully for a system
size of 32. For comparison, however, we provide the re-

sults of Barnes on the SP machine of size 18 only for
both TreadMarks and modified TreadMarks.

The total numbers of retransmitted messages get
drastically reduced as a result of our proposed bar-
rier approach, which lowers contention and quickens the
barrier release process considerably, as listed in Table 3.
From Figure 5,3D-FFT is found to achieve 72% reduc-
tion in the average barrier time, SOR and Jacobi enjoy
more than 80% reduction, and Barnes has about 32%
reduction (which could have been much larger, had it
been executed on a system of size 32). In original Tread-

Marks, all the participants register their arrivals at the
barrier directly through the barrier manager by send-
ing messages immediately when they are ready, causing
severe contention and message losses even for a system
size of only 32 (or 18 in the case of Barnes). The pro-
posed barrier approach effectively alleviates this prob-
lem, yielding a big decrease in the number of retrans-

mitted check-in messages (see Table 3). Similarly, the
release process benefits substantially from the proposed
barrier approach.

Under this system size, the communication time ap-
pears to dominate the total execution time, and the im-
provement in communication overhead due to the pro-
posed barrier approach translates to a significant de-
crease in the run time, as demonstrated in Figure 6.
Specifically, SD-FFT gives rise to 41% run time reduc-

tion, SOR and Jacobi to 58% and 63%, respectively,
but Barnes exhibits only 17% reduction since it is on a
smaller system. While the proposed barrier approach
always results in fewer messages transmitted for any
benchmark, it tends to increase the total amount of
data movement, as mentioned earlier. From Table 3,
the increased amount in data movement due to our bar-
rier approach ranges from 7% to 24%.

154

n TreadMuh -

Ofhs(I) -

Figure 5: Average barrier time on IBM SP machine.

6 Conclusions

We have proposed an approach to barrier synchroniza-
tion in distributed shared memory (DSM) systems. The

experimental results demonstrate that our barrier ap-
proach effectively improves the performance of software
DSMs under release consistency, especially when the
system size grows. This is because more participants
result in swiftly increased overhead due to barrier syn-
chronization, with respect to both the number of re-
transmitted messages and the computation load asso-

ciated with producing separate update information for
participants during the barrier release process. The pro-

posed barrier approach not only parallelizes the barrier
process but also alleviates network contention, lowering
the possibility of message retransmission. As a result,
our barrier implementation makes it possible to con-
struct a larger sized software DSM system, by remov-
ing a performance bottleneck likely to arise as the size
increases. The proposed technique for data transfer re-
duction can eliminate many cold misses during program
execution on TreadMarks, considerably shortening the
run times of benchmarks examined.

Acknowledgements

This material is baaed upon work supported in part by the NSF

under Grants MIP-9201308 and CCR-9300075. The authors grate-

fully acknowledge the use of the Argonne High-Performance Com-

puting Research Facility, which is funded principally by the U.S.

Department of Energy, Mathematical, Information and Compu-

tational Sciences Division (ER-31).

References

[l] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M.
Dias, and M. Snir. SP2 system architecture. IBM Systems
Journal, 34(2):152-184, 1995.

PI

[31

141

151

PI

PI

WI

200

40-

?A-

0- n rl
m-m BXWS SOR J-M

Figure 6: Run time on IBM SP machine.

C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks:
Shared Memory Computing on Networks of Workstations.
Computer, 29(2):18-28, February 1996.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Imple-
mentation and Performance of Munin. In Pmt. oj the 13th
ACM Symp. on Operating Systems Principles (SOSP’SI),
pages 152-164, October 1991.

S. Y. Cheung and V. S. Sunderam. Performance of Barrier
Synchronization Methods in a Multiaccess Network. IEEE
tins. on Parallel and Dialributed Systems, 6(8):890-895,
August 1995.

K. Gharachorloo, D. E. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. L. Hennessy. Memory Consistency and
Event Ordering in Scalable Shared-Memory Multiproces-
sors. In Proc. of the 17th Annual Int’l Symp. on Computer
Architecture (fSCA’90), pages 15-26, May 1990.

D. Hensgen, R. Finkel, and U. Manber. Two Algorithms
for Barrier Synchronization. Int’l Journal on Pamllel Pro-
gmmming, 17(1):1-17, February 1988.

D. Johnson, D. Lilja, and J. Riedl. A Circulating Active Bar-
rier Synchronization Mechanism. In Pmt. of the 1995 Int’l
Conf. on Pamllel Processing (ICPP’95), volume I, pages
202-209, August 1995.

S. L. Johnsson and C.-T. Ho. Optimum Broadcasting and
Personalized Communication in Hypercubes. IEEE tins.
on Compulera, C-38(9):1249-1268, September 1989.

P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory. In
Proc. of the 19th Annual Int’l Symp. on Computer Archi-
tecture (ISCA ‘92), pages 13-21, May 1992.

M. T. O’Keefe and H. G. Dietz. Hardware Barrier Syn-
chronization: Static Barrier MIMD (SBM). In Proc. of
the 1990 Int’l Conf. on Parallel Processing (ICPP’90), VOI-
ume I, pages 35-42, August 1990.

1111 J. Protic, M. Tomasevic, and V. Milutinovic. Distributed
Shared Memory: Concepts and Systems. IEEE Parallel .!I3
Distributed Technology, 4:63-79, Summer 1996.

(121 M. Scott and J. Mellor-Crummey. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM
tins. on Compuler Systems, 9(1):21-65, February 1991.

[13] N.-F. Tzeng and P.-C. Yew. Special Issue on Distributed
Shared Memory Systems. Journal of Parallel and Dis-
tributed Computing, 29(2), September 1995.

[14] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. Distributing hot-
spot addressing in large-scale multiprocessors. IEEE ‘Runs.
on Computers, C-36(4):388-395, April 1987.

155

