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Abstract

In this paper, we propose a new, efficient logging proto-
col, called lazy logging, and a fast crash recovery protocol,
called the prefetch-based crash recovery (PCR), for soft-
ware distributed shared memory (SDSM). Our lazy logging
protocol minimizes failure-free overhead by logging only
data indispensable for correct recovery, while our PCR pro-
tocol reduces the recovery time by prefetching data accord-
ing to the future memory access patterns, thus eliminating
memory miss penalty during the recovery process.

We have performed experiments on workstation clusters,
comparing our protocols against the earlier reduced-stable
logging (RSL) protocol by actually implementing both pro-
tocols in TreadMarks, a state-of-the-art SDSM system. The
experimental results show that our lazy logging protocol
consistently outperforms the RSL protocol. Our protocol
increases the execution time slightly by 1% to 4% during
failure-free execution, while the RSL protocol results in the
execution time overhead of 6% to 21% due to its larger log
size and higher disk access frequency. Our PCR protocol
also outperforms the widely used simple crash recovery pro-
tocol by 18% to 57% under all applications examined.

1. Introduction

Software distributed shared memory (SDSM) provides a
shared memory image on top of parallel systems, such as
distributed memory machines and workstation clusters. For
achieving good performance, SDSM typically adopts re-
laxed memory consistency models [1] to tolerate potentially
high network latencies, realized by delaying communica-
tion and coherence enforcement as much as possible. While
SDSM continues to improve its performance and scalability,
the probability of system failures increases as its size grows.
Hence, for SDSM systems to be employed in long-running
applications or in high-availability situations, a mechanism
for supporting fast crash recovery from node failures is re-
quired, giving rise torecoverable SDSM systems.

Over the past few years, several log-based rollback-
recovery protocols, traditionally called message logging,
have been proposed for providing fault tolerance in SDSM
systems under relaxed memory consistency model [7, 13,
17]. Specifically, Suriet al. proposed the first logging
protocol [17] for relaxed memory consistency-based SDSM
systems, with each process logging all nondeterministic
events (i.e., the arrival of coherence-related messages) in
volatile memory and flushing them to stable storage when
it has to communicate with another process. This logging
scheme allows SDSM to recreate the execution by restart-
ing from the most recent checkpoint and replaying the log
of events. Since the execution between any two consecutive
nondeterministic events is itself deterministic, it produces
an exact replay of the execution before the failure. This
type of pessimistic logging, however, incurs a highfailure-
freeoverhead during normal execution.

To make recoverable SDSM more affordable, it is im-
portant to reduce the logging overhead, e.g., memory space
and the number of disk accesses due to the flushing of
volatile logs. Disk access frequency is critical to SDSM
performance because the high disk latency has a potential
to lengthen the critical path of program execution. Re-
cently, another logging scheme called reduced-stable log-
ging (RSL) has been considered [13]. It reduces the log
size by logging only selected nondeterministic events, such
as the arrival of coherence enforcement messages during
the synchronization process, but not the arrival of memory
update messages, since the latter can be deterministically
recreated once coherence enforcement information (i.e., a
list of dirty pages) is applied. Their simulation results indi-
cated that RSL utilized less disk space for the logged data
than that of [17].

Lazy loggingis a new, efficient protocol we propose in
this paper for achieving recoverable SDSM, aimed at re-
ducing both the log size and the number of disk accesses.
Unlike other protocols, a lazy protocol such as lazy logging
does not log every nondeterministic events (like the arrival
of coherence enforcement or memory update messages). In-
stead, it relies on the log of deterministic events, i.e., read



or write accesses of shared data, that cause nondeterministic
events essential to correct program execution, i.e., request-
ing for an up-to-date shared data. Therefore, lazy logging
precisely logs the events that cause memory updates, while
RSL logs every event that invalidates the memory, no matter
whether it induces any memory update or not. In Figure 1,
for instance, both processesp2 andp3 under the RSL proto-
col log the list of dirty pages piggybacked on the lock-grant
messages received, andp2 also flushes its volatile logs to
stable storage when it sends a message top3. With lazy log-
ging, however,p2 logs nothing because there is no nonde-
terministic events created in that interval, andp3 logs only
the list of pages needed to be updated (i.e., pagex anda
for that interval). Obviously, in the worst case, lazy logging
will log and flush as much as RSL, but in general, it will
create a smaller log size and induce fewer accesses to sta-
ble storage. To lower the number of disk accesses further,
we also introduce an optimization technique based on the
optimistic logging protocol [16]. This technique allows for
our logging protocol to control disk accesses resulting from
flushing volatile logs. More details on lazy logging protocol
and optimization technique are presented in Section 3.
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Figure 1. Logging and Flushing Scenarios
under Different Protocols.

For fast crash recovery, we also propose in Section 3, a
prefetch-based crash recovery(PCR) protocol that reduces
both the memory miss penalty and the number of messages
exchanged during the recovery process. To assess the im-
pacts of our logging and crash recovery protocols on SDSM
performance, we implemented both RSL and our protocols
in TreadMarks (a state-of-the-art SDSM), which was run
on eight Sun Ultra-5 workstations. Experimental results un-
der three parallel applications demonstrate that our lazy log-
ging protocol causes very low failure-free overhead, rang-
ing from 1% to 4% of the normal execution time, and addi-
tionally, our prefetch-based crash recovery protocol short-

ens the recovery time significantly (when compared with
other recovery protocols).

The outline of this paper is as follows. Section 2 provides
basic background pertinent to this work. Our lazy logging
and prefetch-based crash recovery protocols are described
in Section 3. Section 4 presents the performance results of
our proposed protocols, after stating our experimental setup.
We briefly discuss related work in Section 5 and conclude
this paper in Section 6.

2. Pertinent Background

Our logging and crash recovery protocols are developed
for SDSM under lazy release consistency (LRC). It is there-
fore essential to understand SDSM and its optimization pro-
tocols designed to reduce the performance penalty during
failure-free execution. This section provides pertinent back-
ground on SDSM and its coherence protocols, including an
overview on the log-based rollback-recovery protocol.

2.1 SDSM

Parallel programming on distributed memory machines
with explicit message-passing has been known to be diffi-
cult. SDSM simplifies this programming task by providing
an illusion of shared memory image to the programmers.
The implementation of SDSM often relies on virtual mem-
ory page protection hardware to initiate the coherence en-
forcement of a shared memory image. Such hardware sup-
port is readily available in most, if not all, commodity mi-
croprocessors. While versatile and attractive, SDSM has to
minimize its coherence traffic overhead, because its perfor-
mance is especially sensitive to the traffic amount over the
network. To this end, the implementation of SDSM usu-
ally adopts a relaxed memory consistency model [1], such
as release consistency [8], because of its potentially low co-
herence traffic.

Release consistency guarantees that shared memory is
consistent only after synchronization operations, i.e., locks
and barriers. Lazy release consistency (LRC) [11] is an
efficient software implementation of release consistency
model. It postpones coherence enforcement until the ac-
quire is performed. Instead of sending coherence informa-
tion to all other processes at a release, LRC allows coher-
ence information to be piggybacked on the lock grant mes-
sage sent to the process at which acquire is performed, re-
ducing the number of messages needed for enforcing mem-
ory coherence. LRC also avoids sending messages unnec-
essarily to those processes which do not require coherence
information. As a result, LRC-based SDSM generally in-
volves fewer messages and less data exchanged than other
SDSM implementations. In this paper, we are interested in
page-based SDSM developed under the notion of LRC.



2.2 Log-Based Rollback-Recovery

Log-based rollback-recovery has its root in message-
passing systems [4, 10, 16]. It follows thepiecewise de-
terministic system model[16]: A process execution is di-
vided into a sequence of deterministic state intervals, each
of which starts at the occurrence of a nondeterministic event
like a message receipt. The execution between nonde-
terministic events is completely deterministic. During a
failure-free period, each process periodically saves its ex-
ecution state in stable storage as a checkpoint, and all mes-
sages received are logged in the volatile memory before be-
ing flushed to stable storage whenever the local process has
to send a message to another process. Should a failure oc-
cur, the recovery process starts from the last checkpoint and
the logged messages are replayed to reconstruct the execu-
tion before the failure.

3. Proposed Logging and Recovery

3.1 Lazy Logging

We first introduce a new logging protocol for LRC-based
SDSM, called lazy logging, which is aimed at reducing both
the logged data amount and the number of disk accesses.
This protocol is based on logging deterministic events that
cause nondeterministic events truly essential to the consis-
tency of shared memory accesses in SDSM. There are three
types of nondeterministic events in SDSM: The arrival of
lock grant messages, the arrival of memory update mes-
sages, and the arrival of memory update request messages.
However, only the first two types of messages received con-
tain memory coherence-related information that will change
the status of some local copies of shared memory pages.
Specifically, the lock grant message always piggybacks a
list of dirty pages to be invalidated, and the memory update
message contains up-to-date data for local copies of shared
data that are out-of-date, whereas the memory update re-
quest message does not have any affect on the coherence
status of the local copies of shared data.

While it is easy to simply log both lists of dirty pages
and up-to-date data as proposed in [17], its high logging
overhead makes this approach unattractive. By determining
the relation between these two coherence-related nondeter-
ministic events, one can notice that the arrival of memory
update messages is actually dependent on the contents of
the previous lock grant message received, i.e., the list of
dirty pages. Therefore, it is adequate to log only the list of
dirty pages in order to recreate the execution once a failure
happens, known as reduced-stable logging (RSL) [13].

After carefully analyzing the memory coherence en-
forcement mechanism, we found that correct program ex-
ecution relies solely on the integrity of shared memory ac-

cesses made by each process. It is hence unproductive to
log the whole list of dirty pages, because the list of such
dirty pages that request the up-to-date data alone is suffi-
cient to reconstruct correct execution replay. As a result,
our proposed protocol logs only the list of those dirty pages
that are accessed by the process: Each process logs the mes-
sages sent out to request the up-to-date data in volatile mem-
ory and flushes them to stable storage before it communi-
cates with another process. Obviously, the logged data un-
der our proposed protocol is always a subset of RSL logged
data; therefore, our protocol at worst logs the same amount
of data as the RSL protocol. Experimental results indeed
demonstrate that our lazy logging usually logs less data than
RSL, by 35% to 96% for parallel applications examined, as
will be detailed in Section 4.2.

3.1.1 Optimization

To reduce the number of disk accesses further, we con-
sider to incorporate into our lazy logging protocol an opti-
mization technique based on the optimistic logging proto-
col [16]. This technique postpones the flushing of volatile
logs to stable storage until a specific number of intervals
has elapsed. The specific number of intervals is defined
as theflushing distance, denoted byfd. Since the process
advances the execution interval (by incrementing its local
vector timestamp) only at the synchronization points,fd =
1 represents the case of pessimistic logging, flushing ev-
ery time it sends out a synchronization message. By adopt-
ing this optimization technique, we allow for the proposed
logging protocol to control disk access frequency, which is
critical to the failure-free overhead. Should a failure oc-
cur, the volatile logs will be lost and cannot be used during
the recovery process. Consequently, the recovery process
has to restart from the last checkpoint and reconstruct the
execution by recreating all nondeterministic events, instead
of obtaining coherence-related information from the logged
data. However, unlike the rollback-recovery process of op-
timistic logging in message-passing systems, the surviving
processes in SDSM need not to be rollbacked because there
is no process that becomes an orphan after a failure.

Upon a failure in SDSM, there is no orphan process cre-
ated even in the presence of optimistic logging-based opti-
mization due to the following reasons. While three types of
outgoing messages exist in SDSM, none of them can cre-
ate an orphan process since both lock grant and memory
update messages will be sent out only in response to the
lock and memory update request messages from other pro-
cesses; they will not be recreated during the recovery pro-
cess. Memory update request messages do not cause any
change in the memory coherence status of the receiving pro-
cess, and therefore it is unnecessary for surviving processes
to rollback and “unreceive” this type of messages. As a re-
sult, no orphan process is created.



3.1.2 Checkpointing
To limit the amount of work that has to be repeated af-

ter a failure, each process also periodically takes a check-
point. Our proposed logging protocol allows for each pro-
cess to independently perform asynchronouscheckpointing.
A checkpoint consists of all local and shared memory con-
tents, the state of execution, and the internal data structure
used by SDSM. All such information is needed at the be-
ginning of a crash recovery process to avoid restarting from
the (global) initial state. Since our logging protocol never
causes any surviving process to rollback after a failure, only
the most recent checkpointing is needed for the recovery
process. Therefore, after a checkpoint is completed, each
process may discard its previous checkpoint together with
all logged data.

3.2 Prefetch-Based Crash Recovery

Traditionally, when a process failure is detected, a re-
covery process is invoked to reconstruct the execution prior
to the failure by restarting from the most recent check-
point and replaying the log of events. For SDSM, the log
of events contains lists of dirty pages to be invalidated or
updated at each synchronization point to preserve mem-
ory consistency. The widely adopted simple crash recov-
ery (SCR) protocol always performs invalidation because it
does not want to unnecessarily update all dirty pages (as it
may or may not be needed). While this recovery protocol is
straightforward for implementation, it often gives rise to a
mediocre crash recovery speed.

To improve crash recovery performance, we propose a
new protocol, referred to as a prefetch-based crash recovery
(PCR) protocol, for fast recovery. It uses the knowledge of
future shared memory access patterns, gathered during the
failure-free execution by our lazy logging protocol, to bring
a remote data into local memory before it is actually needed.
This data prefetch is performed at each synchronization
point by sending a single memory update request message
to each participating process that holds an up-to-date data.
Upon receiving the memory update message, PCR uses the
logged data to identify whether the accesses to the shared
memory page involve any write operation: if not, the page
status is set to read-only; otherwise, a twin, pristine copy of
that page is created and the page status is set to read-write,
satisfying multiple-writer protocol [6] requirements. As a
result, PCR eliminates both page faults and idle time result-
ing from shared memory access misses during the recovery
process. Figure 2 shows the differences of the coherence
enforcement actions involved during failure-free execution
and the recovery processes under SCR and PCR protocols.
In this example, processp3 is crashed some time after the
volatile logs of this interval are flushed to stable storage, but
before the next checkpoint is created. After a failure is de-
tected, the recovery process starts from the last checkpoint
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Figure 2. Coherence Enforcement Involved
during Normal Execution and Recovery.

and replays the logged data. During this snapshot interval,
the recovery process ofp3 has to request for up-to-date data
of three shared memory pages:x, a, andz. Under the SCR
protocol depicted in Figure 2(b), the update of these three
pages causes three page faults and generates six messages,
whereas PCR shown in Figure 2(c) involves only four mes-
sages and exhibits no page fault. Experimental results con-
firm that this reduction of messages exchanged and elimina-
tion of memory misses significantly improve crash recovery
performance, as will be demonstrated in Section 4.3.

3.3 Implementation

Figure 3 shows the pseudo code of the SDSM routines
involved in the logging and crash recovery processes. Dur-
ing the failure-free execution, volatile logs are created when
a process requests the up-to-date data and are flushed to sta-
ble storage at each point of barrier synchronization or lock
acquire. When a failure is detected thein recoveryflag is set
and up-to-date data from remote processes are prefetched at
the synchronization point. Therefore, no page fault arises
during the recovery process.



apply diffs received to local pages;

if (write_fault)

create twin of page;
set page status to read-write;

else

set page status to read-only;

endif

Barrier

if (in_recovery)

read list of dirty pages from log;
send diff request to any process

with up-to-date copy;

wait for all other processes

apply diffs received to local pages;

if (page_will_be_written)

else

endif

else

if (barrier_manager)

flush log to stable storage;

create twin of page;
set page status to read-write;

set page status to read-only;

to check-in;
invalidate dirty pages;
send barrier release message

piggybacked with list of
dirty pages to all other
processes;

else
send check-in message to

barrier manager;
flush log to stable storage;
wait for barrier release message;
invalidate dirty pages;

endif

endif

Lock Acquire

if (in_recovery)

read list of dirty pages from log;
send diff request to any process

with up-to-date copy;
apply diffs received to local pages;

if (page_will_be_written)

create twin of page;
set page status to read-write;

else

set page status to read-only;

endif

else

send lock request to lock manager;
flush log to stable storage;
wait for lock grant message;
invalidate dirty pages;

endif

Page Fault Handler

send diff request to any process
with up-to-date copy;

log diff request content to volatile log;

Figure 3. Pseudo Code for Lazy Logging and Prefetch-based Crash Recovery.

4. Performance Evaluation

In this section, we briefly describe hardware and soft-
ware employed in our experiments and also present the
evaluation results of our proposed protocols for recover-
able SDSM. We first compare the performance results of our
proposed logging protocol with those of the RSL protocol
and then identify overhead involved using the normalized
execution time breakdown. Since the goal is to compare
the logging overhead, no checkpoint is created in our ex-
periments. Subsequently, we also evaluate and contrast the
crash recovery speeds of our PCR and the SCR protocols.

4.1 Experiment Setup

Our experimental platform is a collection of eight Sun
Ultra-5 workstations running Solaris version 2.6. Each
workstation contains a 270 MHz UltraSPARC-IIi processor,
256 KB of external cache, and 64 MB of physical mem-
ory. These machines are connected via a fast Ethernet (of
100 Mbps). We allocated 512 MB of the local disk at each

workstation for virtual memory paging and left 1.2 GB of
local disk space available for logged data.

We evaluated our proposed logging and crash recovery
protocols by incorporating them in TreadMarks [2], a LRC-
based SDSM. For the measurements of failure-free over-
head and the crash recovery speed, the experiments were
performed on three parallel applications included in Tread-
Marks distribution: 3D-FFT, SOR, and Water. 3D-FFT is
a 3-dimensional fast fourier transform originally from the
NAS benchmark suite [3]. SOR implements the red-black
successive over-relaxation algorithm for solving discretized
Laplace equations. Water is a molecular dynamics simula-
tion from the SPLASH benchmark suite [15]. The data set
size and synchronization type of each application used in
this experimental study are listed in Table 1.

Program Data Set Size Synchronization

3D-FFT 400 iterations on25�25�25 data barriers
SOR 350 iterations on 2K�2K input barriers
Water 100 iterations on 512 molecules locks and barriers

Table 1. Applications’ Characteristics.



4.2 Performance Results of Logging Protocols
Table 2 presents the failure-free overhead of logging pro-

tocols. It lists total execution time, percentage overhead in
comparison to the execution time of the program with no
logging protocol incorporated, the log size, and the num-
ber of times the volatile logs are flushed to stable storage.
Since no logging exists in the original TreadMarks, its exe-
cution time is used as a performance base line. Both our
lazy logging and the RSL protocols provide TreadMarks
with crash recovery capabilities, but they involve different
performance penalty amounts. From Table 2, it is apparent
that our lazy logging consistently results in lower failure-
free overhead than RSL, which requires a larger log size
and more frequent accesses to stable storage. The log size
of our protocol is smaller than the RSL protocol by as much
as 35% for 3D-FFT, 96% for SOR, and 68% for Water. Lazy
logging also reduces the number of disk accesses through
delaying the flushing operation. By setting the flushing dis-
tance of our lazy logging to ten (i.e.,fd = 10) in this ex-
periment, we lower the disk access frequency by as much
as 89% for 3D-FFT and SOR, and by more than 90% for
Water.

Logging Execution Percentage Log Size # of
Protocol Time (sec.) Overhead (KB) Flushes

None 83.5 - - -
Lazy Logging 84.4 1.1 383 80
RSL 101.3 21.3 592 804

(a) 3D-FFT

Logging Execution Percentage Log Size # of
Protocol Time (sec.) Overhead (KB) Flushes

None 445.2 - - -
Lazy Logging 452.1 1.5 19 70
RSL 471.6 5.9 512 703

(b) SOR

Logging Execution Percentage Log Size # of
Protocol Time (sec.) Overhead (KB) Flushes

None 125.0 - - -
Lazy Logging 129.7 3.8 299 55
RSL 150.2 20.2 944 702

(c) Water

Table 2. Overhead Details under Different
Logging Protocols.

Figure 4 shows the impacts of different logging proto-
cols on execution time. For each application, the top-most
portion of the normalized execution time for our lazy log-
ging and the RSL cases (labeled as “Logging Overhead”)
represents failure-free overhead associated with perform-
ing logging. The remaining time is broken down into the
following four categories, from top to bottom: time spent
in stalled waiting for (i) synchronization and (ii) remote
memory misses, respectively; (iii) time spent in executing
SDSM protocols; and (iv) time spent in computation and
the OS kernel. According to Figure 4, our lazy logging pro-
tocol adds very little overhead to the execution time, rang-
ing from 1% to 4% only. This low overhead results directly
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from a small log size and a low disk access frequency. By
contrast, RSL increases the execution time by as much as
21% for 3D-FFT, 6% for SOR, and 20% for Water. RSL
leads to reduced synchronization idle times for 3D-FFT and
SOR, because flushing volatile logs is done during the busy-
waiting period of the synchronization operation, but not for
Water since its busy-waiting period is not long enough to
accommodate the flushing operation; as a result, it even
prolongs the synchronization idle time in that application.
Note that busy-waiting period is highly dependent on the
application code, overall system load and its distribution,
and inputs. We also notice that the logging protocols have
slightest impacts on SOR performance. This is because the
computation-to-communication ratio in SOR is very high,
and therefore logging overhead caused by message logging
becomes insignificant.

4.3 Performance Results of Crash Recovery

Table 3 lists the measurements of crash recovery perfor-
mance in terms of recovery time, the number of synchro-
nization messages, the number of data request messages,
and the number of page faults. Both synchronization and
data request messages represent traffic over the network,
while page faults contribute to the memory miss idle time,
SDSM overhead, and time spent in the OS kernel. As
no crash recovery protocol is incorporated in the original
TreadMarks, should a failure occur, it has to restart from the
(global) initial state without any logged data for execution
replay. As a result, it spends the same amount of time for re-
executing the program without any time savings. This nor-
mal execution time is employed as a base line for crash re-
covery performance comparison. Under our prefetch-based
crash recovery (PCR) protocol, the recovery time is short-
ened by as much as 83% for 3D-FFT, 8% for SOR, and
more than 65% for Water (see Table 3). Although the page
fault has been eliminated and the number of messages ex-
changed has been minimized for the SOR application, we
are unable to significantly shorten its crash recovery time,
because computation itself dominates the overall execution
time, as shown in Figure 5. While the simple crash recovery



(SCR) protocol lowers the recovery time by eliminating the
synchronization messages, it increases recovery time due to
the memory misses and reading large logged data, where
high overhead results. From Table 3, SCR yields a net re-
duced recovery time by 59% for 3D-FFT and 49% for Wa-
ter, but it actually increases the recovery time by more than
45% for SOR, where overhead associated with the protocol
outweights its gain. Hence, our PCR protocol outperforms
the SCR protocol by 18% to 57% under parallel applica-
tions examined.

Recovery Recovery # of Sync. # of Data # of Page
Protocol Time (sec.) Messages Req. Mesg. Fault Traps

None 83.5 33691 378 354
PCR 14.4 0 147 0
SCR 34.4 0 378 354

(a) 3D-FFT

Recovery Recovery # of Sync. # of Data # of Page
Protocol Time (sec.) Messages Req. Mesg. Fault Traps

None 445.2 9062 140 3219
PCR 410.5 0 140 0
SCR 664.7 0 140 3219

(b) SOR

Recovery Recovery # of Sync. # of Data # of Page
Protocol Time (sec.) Messages Req. Mesg. Fault Traps

None 125 109239 2946 600
PCR 42 0 2769 0
SCR 64 0 2946 600

(c) Water

Table 3. Overhead Details under Different
Crash Recovery Protocols.

Figure 5 illustrates the impacts of crash recovery pro-
tocols on recovery performance. For each application, the
top-most portion of the normalized recovery times for our
PCR and the SCR cases (labeled as “Recovery Overhead”)
represents recovery overhead. The remaining time compo-
nents are the same as in Figure 4. According to the fig-
ure, our PCR eliminates both synchronization and memory
misses idle times completely through using the logged data
and performing data prefetches, respectively. Data prefetch-
ing in PCR not only avoids the page faults, but also de-
creases the time spent in the OS kernel and SDSM proto-
cols. While SCR eliminates the synchronization idle time
by reading the logged data, the recovery time may actually
increase if the log size is large, as the recovery process then
has to spend a long time in reading it. Reduction in mem-
ory miss idle time under SCR is due to lighter traffic over
the network during the recovery process. In summary, PCR
always outperforms SCR because it involves very low re-
covery overhead and alleviates most of the SDSM perfor-
mance bottleneck due to high network latencies.

5. Related Work
Most previous work on rollback-recovery in SDSM

adopted synchronous checkpointing protocols to establish
a consistent global state after a failure [5, 9, 12, 18]. While
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Figure 5. Impacts of Crash Recovery Proto-
cols on Recovery Performance.

those protocols are not susceptible to an unbounded roll-
back, attributed to thedomino effect, their failure-free over-
heads are often high because all processes have to synchro-
nize during the checkpoint process.

To this end, log-based rollback-recovery is a preferred
choice for implementing recoverable SDSM, thanks to its
low failure-free overhead. Richard and Singhal [14] con-
sidered logging and asynchronous checkpointing protocols
for sequentially consistent SDSM. Their logging protocol
logs the contents of all shared memory accesses and causes
high overhead due to a large log size and high disk ac-
cess frequency. Suri, Janssens, and Fuchs [17] reduced
the overhead of that protocol by logging only the records
of all shared memory accesses, instead of their contents.
They also proposed a logging protocol for SDSM under re-
laxed memory consistency models [17], realized by logging
all received coherence-related messages in volatile mem-
ory and flushing them to stable storage before communi-
cating with another process. This protocol, however, suf-
fers from communication-induced accesses to stable stor-
age. Costaet al. introduced a vector clock logging proto-
col [7], based upon the idea of sender-based message log-
ging protocols [10], in which the logged data are kept in
volatile memory of the sender process. Unfortunately, the
protocol cannot handle multiple-node failures. Recently,
Park and Yeom [13] described a logging protocol known as
reduced-stable logging, obtained through refining the pro-
tocol proposed in [17] by logging only the content of lock
grant messages, i.e., the list of dirty pages. Their simulation
results indicated that the protocol utilized less disk space for
the logged data.

In this paper, we have introduced a new logging pro-
tocol dubbed lazy logging, which significantly reduces the
log size and the number of accesses to stable storage. We
have collected the performance data of our protocol and the
reduced-stable logging protocol on a workstation cluster us-
ing TreadMarks. Additionally, we also introduce a prefetch-
based crash recovery protocol to speed up the recovery pro-
cess by reducing the number of messages exchanged and



eliminating the memory misses; this is the first recovery
protocol actually implemented on a real system for evalu-
ation. No prior work has ever addressed effective recovery,
despite it is important to a recoverable SDSM system.

6. Conclusions
We have dealt with a new, efficient log-based rollback-

recovery technique for recoverable SDSM implementation
in this paper. The experimental outcomes demonstrate that
our lazy logging protocol incurs very low failure-free over-
head, roughly 1% to 4% of normal execution time, and that
our prefetch-based crash recovery protocol improves crash
recovery speed by 18% to 57% when compared with the
widely used simple crash recovery protocol. This results
directly from our lazy logging, which keeps only informa-
tion essential for recovery to a consistent execution state
and requires fewer disk accesses. While a simple crash re-
covery protocol follows the normal execution replay and in-
validates shared memory at all synchronization points, our
proposed recovery protocol totally eliminates the memory
miss idle and obviates the need of memory invalidation
steps through prefetching an up-to-date data before it will
be accessed in a subsequent execution interval, therefore
giving rise to faster crash recovery. Our lazy logging and
prefetch-based crash recovery are readily applicable to ar-
rive at recoverable SDSM systems effectively.
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