
Logging and Recovery in Adaptive Software
Distributed Shared Memory Systems

Angkul Kongmunvattana and Nian-Feng Tzeng

Center for Advanced Computer Studies
University of Southwestern Louisiana

Lafayette, LA 70504

Abstract

Software distributed shared memory (DSM) improves the
programmability of message-passing machines and work-
station clusters by providing a shared memory abstract (i.e.,
a coherent global address space) to programmers. As in
any distributed system, however, the probability of software
DSM failures increases as the system size grows. This pa-
per presents a new, efficient logging protocol for adaptive
software DSM (ADSM), called adaptive logging (AL). It is
suitable for both coordinated and independent checkpoint-
ing since it speeds up the recovery process and eliminates
the unbounded rollback problem associated with indepen-
dent checkpointing. By leveraging the existing coherence
data maintained by ADSM, our AL protocol adapts to log
only unrecoverable data (which cannot be recreated or re-
trieved after a failure) necessary for correct recovery, re-
ducing both the number of messages logged and the amount
of logged data.

We have performed experiments on a cluster of eight Sun
Ultra-5 workstations, comparing our AL protocol against
the previous message logging (ML) protocol by implement-
ing both protocols in TreadMarks-based ADSM. The exper-
imental results show that our AL protocol consistently out-
performs the ML protocol: Our protocol increases the exe-
cution time slightly by 2% to 10% during failure-free execu-
tion, while the ML protocol lengthens the execution time by
many folds due to its larger log size and higher number of
messages logged. Our AL-based recovery also outperforms
ML-based recovery by 9% to 17% under parallel applica-
tion examined.

1. Introduction

Parallel programming under the message-passing
paradigm on distributed memory systems, like workstation
clusters, has been known to be difficult because it in-
volves interprocess communication operations and requires
explicit data partitioning. Software distributed shared
memory (DSM) simplifies parallel programming tasks

by providing a shared memory abstract (i.e., a coherent
global address space) to programmers, making cluster
computing attractive. This shared memory abstraction
spans across memory modules at interconnected nodes.
Memory coherence is maintained through manipulating a
virtual memory protection mechanism, which is readily
available in most, if not all, commodity microprocessors,
without any extra hardware. Software DSM performance
is dictated by the number of messages exchanged and the
amount of data transfer over the networks. In most cases,
memory consistency models and coherence enforcement
protocols play a significant role on both the communi-
cation frequency and the load of communication traffic.
Software DSM often adopts a relaxed memory consistency
model [1], which makes several optimizations possible.
The basic version of software DSM, dubbedBasic DSM
(BDSM), uses write-invalidate (WI) and multiple-writer
(MW) protocols for enforcing its memory coherence [3].
To improve performance further, state-of-the-art software
DSM also employs write-update (WU) and single-writer
(SW) protocols as alternatives. This advanced version of
software DSM, referred to asAdaptive DSM(ADSM),
adapts its coherence enforcement protocols according to
shared memory access patterns of the application pro-
grams [2, 15]. While faster processors, higher network
bandwidth, and more sophisticated protocols continue to
improve software DSM performance and scalability, the
probability of system failures also increases as the system
size grows. Hence, a mechanism for supporting fast crash
recovery in software DSM is required [20], giving rise to
recoverable software DSM systems.

Message logging is a popular technique for providing
BDSM with fault-tolerant capability [7, 14, 16, 17, 19].
This technique is attractive because it allows independent
checkpointing without any domino effect and improves
the crash recovery speed when coordinated checkpoint-
ing is employed [9]. While those earlier logging proto-
cols work well under BDSM, they cannot be directly ap-
plied to ADSM. This is because ADSM maintains its co-
herence enforcement data differently from BDSM. Specif-



ically, BDSM always keeps a summary of modifications
made to each shared memory page (known asdiff), while
ADSM creates diff only when the MW protocol is used for
enforcing the coherence of shared memory pages. Although
a message logging protocol without leveraging any coher-
ence enforcement data maintained by software DSM was
considered [19], several later studies have shown that such
a naive implementation is undesirable due to its high over-
head during the failure-free execution [7, 16].

In this paper, we propose a new, efficient logging pro-
tocol, calledadaptive logging(AL), for ADSM. Our AL
protocol closely tracks the adaptation of coherence enforce-
ment for each shared memory page and only records in-
formation indispensable for recovery, insuring correct re-
covery with minimum overhead. To assess the impacts of
our AL protocol on ADSM performance, we have imple-
mented our AL protocol in TreadMarks-based ADSM [15]
and conducted an experimental study. We also implemented
an earlier message logging (ML) protocol [19] separately in
TreadMarks-based ADSM for comparison. Our experiment
has been conducted on a cluster of eight Sun Ultra-5 work-
stations. Results demonstrate that our AL protocol consis-
tently outperforms the ML protocol: Our protocol increases
the execution time merely by 2% to 10% during failure-free
execution, while the ML protocol lengthens the execution
time from threefold to more than eightfold (i.e., 280% to
840%) due to its large log sizes. Our recovery also per-
forms better than ML-based recovery by 9% to 17% under
parallel applications examined.

The outline of this paper is as follows. Section 2 pro-
vides basic background pertinent to this work and details
on some related work. Our adaptive logging protocol along
with the checkpointing and recovery techniques is described
in Section 3. Section 4 presents our experimental setup and
parallel applications used in this study. Performance results
of our proposed protocol are demonstrated in Section 5. We
conclude this paper in Section 6.

2. Pertinent Background

2.1 Software DSM

Software DSM creates a shared memory image on top
of parallel systems with physically distributed processing
nodes, such as distributed memory multiprocessors and
workstation clusters. These processing nodes (i.e., proces-
sors) are connected via high-speed networks, such as the
fast Ethernet, ATM, or VIA. A group of processes run on
such nodes to execute a parallel application program, and
they enforce memory coherence through explicit message
exchange. The memory coherence enforcement protocols
are often devised under the notion of relaxed memory con-
sistency models [1], aimed at low coherence traffic and
good performance. To this end, release consistency [10]
(i.e., one of the least restrictive relaxed memory consistency

models) is a favorite choice because it does not guarantee
that shared memory is consistent all of the time, but rather
making sure consistence only after synchronization opera-
tions (i.e., locks and barriers). In essence, release consis-
tency ensures a synchronized program to see a sequentially
consistent execution through the use of two synchronization
primitives:acquirefor a process to get access to the shared
variable, andreleasefor a process to relinquish an acquired
variable, permitting another process to acquire the variable.
In a synchronized program, a process is allowed to use a
shared data only after acquiring it, and the acquired data
may then be accessed and modified before being released
(and subsequently acquired by another process). Each pro-
cess is also permitted to update the shared data multiple
times locally, but all the updates have to be completed be-
fore the release is performed.

Lazy release consistency (LRC) [13] is an efficient soft-
ware implementation of the release consistency model. It
postpones coherence enforcement until the acquire is per-
formed (by another process). Instead of sending coher-
ence information to all other processes at a release, LRC al-
lows coherence information to be piggybacked on the lock
grant message sent to the process at which acquire is per-
formed, reducing the number of messages needed for en-
forcing memory coherence. LRC also avoids sending mes-
sages unnecessarily to those processes which do not require
coherence information. As a result, LRC-based software
DSM generally involves fewer messages and less data ex-
changed than other software DSM implementations. There
are several basic memory coherence enforcement protocols
available under LRC implementation. Each protocol de-
mands a different amount of resources (i.e., memory) and
generates a different traffic amount (i.e., messages) over the
networks, yielding different performance gains for different
shared memory access patterns. We explain each protocol
under the context of LRC as follows:

� Multiple-Writer Protocol (MW) alleviates the thrashing
problem due to falsely shared data (i.e., reduces traffic
over the network) by allowing each process to concur-
rently modify non-overlapping parts of its local copy
of the same shared memory page. Since these mod-
ifications have to be accumulated and merged at the
next synchronization point, it consumes a significant
amount of memory and induces extra computation.

� Single-Writer Protocol (SW) has very low protocol
overhead but permits only one writable copy of any
shared memory page at any given time. Although
LRC-based SW allows multiple read-only copies to
co-exist with one writable copy, it often creates an ex-
cessive amount of data transfer on write-write false
sharing data.



� Write-Update Protocol (WU) enforces memory coher-
ence by updating all copies of modified shared mem-
ory pages at a synchronization point. Modification in-
formation is piggybacked with synchronization mes-
sages. With the MW protocol, only the summary of
modifications is sent, instead of a whole memory page
(as in the SW protocol). In both cases, the WU proto-
col often sends a substantially large amount of data to
processes that do not need them.

� Write-Invalidate Protocol (WI) invalidates all other
copies of shared memory pages that have been mod-
ified. Invalidation is performed at a synchronization
point. Only the processes that actually need the up-to-
date copy of these pages will request for the updates,
optimizing the data transfer amount at the expense of
memory access miss latency.

In the basic implementation of software DSM, called
BDSM, the consistency of shared memory pages is enforced
by MW and WI protocols, which optimize both the data
transfer amount and the number of message exchange [3].
Past research in message logging for software DSM is based
on this BDSM implementation, where two static coher-
ence enforcement protocols, MW and WI, are applied to all
shared memory pages [7, 14, 16, 19]. While BDSM works
well on several applications, recent studies have shown that
flexibility on selecting a coherence enforcement protocol
for each shared memory page can improve software DSM
performance significantly [2, 15]. Next, we explain such an
adaptive approach in detail.

2.2 Adaptive DSM (ADSM)

ADSM refers to an LRC-based software DSM system
with multiple basic protocols employed [2, 15], and it
dynamically determines the protocol operations for each
shared memory page during run-time, according to both
data transfer amounts and shared memory access patterns.
Such adaptation in ADSM allows great flexibility and im-
proves software DSM performance on a wide range of ap-
plications because it selects appropriate coherence enforce-
ment protocols for each shared memory page, reducing co-
herence enforcement overhead [2, 15]. The sharing patterns
can be classified as follows:

� Migratory Data refers to shared memory pages that are
guarded by lock synchronization primitives, permit-
ting only one processor to access the protected data at
a time. The ownership of these shared pages is trans-
ferred from one processor to another at lock release
and acquire, hence the name migratory. Consistency
of shared memory pages in this class is enforced by
the SW protocol because no more than one processor

may modify these pages at a time. The WU protocol is
applied only at lock acquire where access patterns are
well-predicted; otherwise, the WI protocol is used.

� One Producer/Multiple Consumers Datarefers to shared
memory pages that are repeatedly modified by the
same processor, and subsequently consumed by other
processors. Shared memory pages in this category are
guarded with barrier synchronization primitives and
are managed by SW and WU protocols. This is appro-
priate since the same processor always holds the own-
ership of these pages. While the use of an update pro-
tocol at the barrier causes a substantial amount of data
transfer, it reduces memory miss idle time for well-
predicted access patterns, improving software DSM
performance.

� Falsely Shared Datarefers to shared memory pages that
are modified by multiple processors at different parts
of their contents at the same time. Shared memory
pages in this case are enforced by the MW and WI pro-
tocols. Without the MW protocol, simultaneous access
to the same shared memory page is not permitted and
the page will bounce among a group of processors that
wish to access it, leading to a thrashing problem. The
invalidation protocol is applied both at the lock acquire
and at the barrier, and therefore, each processor will re-
ceive data only when it is needed, minimizing the data
transfer amount and coherence traffic.

Coherence protocol adaptation in LRC-based software
DSM was considered first by Dwarkadaset al: [8], who in-
troduced a hybrid protocol based on the integration of WI
and WU protocols. Their simulation results demonstrated
that the benefits of WI and WU protocols can be combined,
reducing the data transfer amount as well as the number of
memory access misses and of messages exchanged. Later
on, Amzaet al: [4] studied the benefits of software DSM
protocols that adapt between SW and MW protocols. They
used the write granularity and the false sharing effect to se-
lect the protocols. Specifically, the SW protocol was used
with little or no write-write false sharing data, whereas the
MW protocol was employed for falsely shared data. They
concluded that the adaptive protocols consume less mem-
ory than the MW protocol and generate lower communica-
tion traffic than the SW protocol. Recently, Monnerat &
Bianchini [15] and Amzaet al: [2] investigated the adapta-
tion between SW and MW protocols, and between WI and
WU protocols. They explored adapting these protocols in
response to the changes of shared memory access patterns.
Their results demonstrated the benefits of adaptive proto-
cols in software DSM, leading to substantial performance
improvement. These adaptive protocols serve as a basis of
our study. Next, we summarize earlier work on message
logging for software DSM.



2.3 Related Work
Message logging has its root in message-passing systems

and has been studied extensively [6, 9, 11, 12, 18]. While
it is possible to apply these protocols directly to LRC-based
software DSM [19], a system resulting from this direct ap-
plication is undesirable because of high overhead during
failure-free execution [7, 16].

The study on message logging for software DSM has
been attempted by researchers [17, 19]. In particular, Suri,
Janssens, and Fuchs proposed a logging technique for LRC-
based software DSM with MW and WI protocols employed
(i.e., BDSM) [19]. Their technique logs every incoming
message related to the state of shared data and does not
leverage coherence data maintained by BDSM. Unfortu-
nately, this technique has been proven to cause excessive
overhead, hampering BDSM performance [7, 16]. Costa
et al: considered a vector clock logging technique [7] in
which the logged data are kept in volatile memory of the
sender process, leveraging the coherence data present in
BDSM. Such a logging technique consequently keeps much
less data, but it cannot handle multiple failures. A logging
technique obtained through refining the technique proposed
in [19] by logging only the contents of lock grant messages
(i.e., the list of dirty pages) is known as reduced-stable log-
ging (RSL) [16]. Simulation results indicated that RSL
utilized less disk space for the logged data than the tech-
nique given in [19]. Recently, lazy logging has been de-
vised [14], and experimental results have shown that lazy
logging causes lower execution overhead than RSL because
of the significantly reduced log size and number of accesses
to stable storage.

While all these earlier message logging protocols work
well under BDSM, only those which do not rely on coher-
ence data maintained by BDSM can be applied to ADSM,
an adaptive multi-protocol software DSM, but those logging
protocols always yield high overhead and are thus unde-
sirable. We propose an efficient logging protocol, which
tracks closely the adaptation of coherence enforcement, for
ADSM in the next section, and compare the execution over-
head of our adaptive logging protocol with that of a previous
approach in Section 5.

3. Proposed Adaptive Logging
3.1 Motivation

Traditionally, logging protocols for software DSM are
proposed for unbounded rollback recovery of independent
checkpointing techniques [7, 14, 16, 17, 19]. Without mod-
ifications, these logging protocols can also speed up the re-
covery of coordinated checkpointing techniques [9].

An efficient logging protocol for software DSM lever-
ages existing coherence data maintained by software DSM
itself [7, 14, 16]. Such a logging protocol requires to un-
derstand coherence enforcement protocols adopted by each

software DSM system. In particular, prior logging proto-
cols are designed for software DSM that manages all of
its shared memory pages using the MW and WI proto-
cols (i.e., BDSM), and therefore, those logging protocols
assume that the sender process always maintains a copy
of diff (i.e., a summary of modifications) for each shared
memory page in its memory. As software DSM contin-
ues to improve its performance by implementing an in-
creasingly sophisticated memory coherence protocol, this
assumption no longer holds true. ADSM, for example, em-
ploys a wide range of coherence enforcement protocols and
manages each shared memory page according to its access
patterns [2, 15]. This improvement renders the assumption
made by earlier logging protocols obsolete since the sender
process then no longer always maintains the coherence data
in its memory. While a trivial approach is to resort to a
logging protocol that makes no use of coherence data main-
tained by software DSM [19], we demonstrate that such an
approach is undesirable due to its excessive overhead dur-
ing failure-free execution (see Section 5 for experimental
results), and thus, there is a need to devise a suitable log-
ging protocol for ADSM.

3.2 Protocol Description

Our adaptive logging (AL) protocol aims at providing
low-overhead crash recovery capability to ADSM. It logs
only the coherence data that is truly necessary for correct
recovery (i.e., cannot be retrieved or reconstructed during
recovery) in ADSM. In addition, our AL protocol also cre-
ates a volatile log of such coherence data at the sender pro-
cess that is not maintained by ADSM. Coherence-related
messages in ADSM can be classified as follows:

� Write-Invalidation Message (WIM) refers to a mes-
sage that contains a list of dirty pages (i.e., write-
invalidation notice), and that exclusively utilizes by
the WI protocol. This type of messages is sent only
at a synchronization point and is typically small (less
than 2KB). At a lock acquire, WIM is referred to as a
lock grant message since it not only contains a write-
invalidation notice, but also allows a receiving process
(i.e., an acquirer) to enter the critical section. At a bar-
rier, the barrier manager receives WIM from all partic-
ipating processes, as check-in messages, and sends out
WIM to all processes as check-out messages.

� Write-Update Message (WUM)refers to a message that
carries either a summary of modifications (i.e., a diff)
or an up-to-date copy of shared memory pages, and
that is solely used by the WU protocol. This type of
messages is also sent only at a synchronization point.
Its size is usually larger than that of WIM since it con-
tains either diffs or copies of whole memory pages. At



a lock acquire, a lock grant message is piggybacked
with diffs when the MW protocol is selected; oth-
erwise, it is piggybacked with up-to-date copies of
shared memory pages when the SW protocol is used.
At a barrier, the barrier manager also receives WUM
from all other processes as check-in messages, and
sends out WUM to every process as check-out mes-
sages.

� Memory-Update Message (MUM) refers to a message
that delivers either a summary of modifications (i.e., a
diff) or an up-to-date copy of a shared memory page.
This type of messages is used for updating a local copy
of an invalid shared memory page, and therefore, only
pages managed by the WI protocol incur MUM. The
size of MUM ranges from a few bytes to 8KB (equal
to the size of a shared memory page), depending on the
coherence protocol selected (i.e., a diff for MW and a
whole page for SW).

For a logging protocol that does not take advantage of
coherence data maintained by software DSM [19], all these
coherence-related messages must be logged by the receiver,
referred to as the message logging (ML) protocol. Such a
naive implementation tends to induce an excessive log size,
hampering ADSM performance (as will be demonstrated in
Section 5). On the contrary, our AL protocol leverages ex-
isting coherence data maintained by ADSM and logs only
WIM, keeping logging overhead low during failure-free ex-
ecution. Since only WIM is logged and WIM is typically
smaller than WUM and MUM, our AL protocol signifi-
cantly reduces both the frequency of disk accesses and the
amount of logged data. Logging WIM alone, however, can-
not guarantee correct crash recovery because WUM and
MUM for a shared memory page under the SW protocol do
not create a copy of coherence data, and therefore, it is nec-
essary for our AL protocol to produce a volatile log for such
data at the sender process. Although the total size of our
volatile log may be large, it has little impact on ADSM per-
formance because such a volatile log is created and swapped
out later whenever memory space runs short (and such a
volatile log is never paged in again till the time of recov-
ery). By contrast, coherence data created and maintained in
memory by ADSM tend to be accessed and modified fre-
quently, critical to overall performance. Whenever memory
consumption of ADSM reaches a pre-set threshold, its stor-
age reclamation routine will clean up the coherence data.
Such a process involves a large amount of data transfer and
many communication messages. We therefore overlap our
garbage collection of the volatile log, which requires no in-
terprocess communication, with the ADSM storage recla-
mation process, hiding extra overhead altogether.

In summary, our AL protocol leverages coherence data
maintained by ADSM to reduce the number of message and

w(z) acq w(x) w(y) rel

inv(y,z)
page(x)

acq

logged(x)

r(x) r(y)

logged(y)

w(x)

page(y)

rel

w(z)

acq

inv(y,z)
page(x)

r(x) r(y)

page(y)

w(x) rel

logged(x)logged(upd(x,1))

logged(upd(x,2))

w(z)

diff(z)

P1

P2

P3

Legend

w(x)

w(y)

w(z)

r(x)

r(y)

--> write to page x

--> write to page y

--> write to page z

--> read from page x

--> read from page y

logged(upd(x,1))

logged(upd(x,2))

--> logged that up-to-date copy of x sent from P1

--> logged that up-to-date copy of x sent from P2

logged(y)

logged(x) --> logged contents of page x

--> logged contents of page y

inv(y,z)

page(x)

page(y)

acq

rel

--> lock acquire

--> lock release

--> invalidate page y and z

--> up-to-date copy of page x

--> up-to-date copy of page y

diff(z) --> diff of page z

Figure 1. A Snapshot of Adaptive Logging and
ADSM Protocols in Action.

the amount of coherence data to be logged. While it creates
a volatile log whenever necessary, the volatile log so cre-
ated has little impact on memory resource and ADSM per-
formance because it is not accessed till the recovery time.
Experimental results show that our AL protocol increases
the execution time slightly, by 2% to 10% for parallel appli-
cations examined, as will be shown in Section 5. Next, we
exemplify a snapshot of ADSM and our AL protocol.

Example

Figure 1 depicts a snapshot of adaptive logging in
ADSM. In this example, shared memory pagesx, y, and
z are classified to be migratory, producer/consumer(s), and
falsely shared, respectively. We assume that pagex is mi-
grated from processp1 to processp2, and then to process
p3. Pagey is produced by processp1 and subsequently con-
sumed by bothp2 andp3. Finally, pagez is falsely shared
by processesp1 andp2. Under this assumption, pagex is
managed by SW and WU protocols, pagey is by SW and
WI protocols, and pagez is by MW and WI protocols. Ap-
parently, a lock grant message from processp1 to processp2
(of an acquire) is piggybacked with the up-to-date copy of
pagex plus a list of dirty pages to be invalidated (i.e., pages
y andz, in this example). Processp1 creates a volatile log
of pagex before it makes any further modification to the
page. Upon receiving a lock grant message fromp1, pro-
cessp2 not only updates its local copy of pagex and inval-
idates pagesy andz, but also records that it has received
an up-to-date copy of pagex from processp1. Note that
the WI protocol keeps a list of dirty pages along with a list
of processes that modified those pages, so no extra record
has to be kept for our recovery protocol (which utilizes the



same dirty page list). When processp1 receives a request
for pagey from processp2, it creates a volatile log of page
y before sending out an up-to-date copy of pagey to pro-
cessp2. On the contrary, upon receiving a memory update
request of pagez from processp2, processp1 simply cre-
ates a diff (i.e., a summary of modifications) and sends it to
processp2. No volatile log is created in this case because
the MW protocol (while manages pagez) keeps all diffs
until the garbage collection routine is activated. For process
p3, on receiving a lock grant message fromp2, it creates a
record which specifies its receipt of an up-to-date copy of
pagex from processp2. Processp2 has to create a volatile
log of pagex before making any further change to the page.
When processp3 requests for an up-to-date copy of pagey

from processp1, p1 need not to create another volatile log
for pagey since the previously created copy (i.e., the one
generated when it sent pagey to processp2) is adequate for
correct recovery under LRC.

3.2.1 Checkpointing

As we have mentioned earlier, our AL protocol is suit-
able for both coordinated and independent checkpointing
since it speeds up the recovery process and avoids the
unbounded rollback problem associated with independent
checkpointing. Periodically, a checkpoint is created to limit
the amount of work that has to be repeated after a failure.
Under a coordinated checkpointing scheme, a checkpoint
is taken at the selected synchronization points, where all
processes exchange messages (i.e., barrier). For indepen-
dent checkpointing, each process independently creates a
checkpoint on stable storage. The difference between co-
ordinated and independent checkpointing lies in how to re-
construct a globally consistent state of execution. Specifi-
cally, a globally consistent state can be rebuilt by combining
the checkpoints of every process under a coordinated check-
pointing technique, whereas the logged data is needed for a
failed process in reconstructing a globally consistent state of
execution under an independent checkpointing technique.
While coordinated checkpointing may do without logging,
the logged data speed up recovery by eliminating synchro-
nization messages and reducing memory miss idle time dur-
ing the crash recovery process. The selection of checkpoint-
ing techniques for ADSM, however, is beyond the scope of
this paper.

In both cases, a checkpoint consists of all local variables
and shared memory contents, the state of execution, and all
local internal data structures used by ADSM. All such in-
formation is needed at the beginning of a crash recovery
process to avoid restarting from the (global) initial state.
While the first checkpoint flushes all shared memory pages
to stable storage, our incremental checkpointing incorpo-
rates into the subsequent checkpoints, only those pages that
have been modified since the last checkpoint. Specifically,

our checkpointing protocol relies on coherence information
and memory update logs to identify and selectively flush
the changes to the shared memory pages into stable storage,
reducing failure-free overhead.

3.2.2 Recovery

Our AL-based recovery is activated after a failure occurs
and is detected. It reconstructs the execution prior to the
failure by restarting from the most recent checkpoint and
replaying the log of events. The log of events for our AL-
based recovery contains lists of dirty pages to be invalidated
or updated at each synchronization point. For ML-based re-
covery, the log of events includes all messages received at
synchronization points and at memory misses. There is no
orphan process created under either AL or ML protocols be-
cause all three message types (i.e., WIM, WUM, MUM) in
ADSM are sent out only in response to request messages
from other processes. During recovery, there will be no re-
quest for WIM since the recovery process can read a write-
invalidation notice from its local logged data. The messages
requesting for WUM and MUM do not create any orphan
process because such requests do not change the status of
shared memory pages at the receiving process, and there-
fore, it is unnecessary for surviving processes to rollback
and “unreceive” these requests. As a result, no orphan pro-
cess is created.

Since our AL protocol guarantees that all shared mem-
ory pages needed for memory update operations during re-
covery are readily available from the sender process(es), the
recovery process can overlap such update requests with disk
access operations and also benefits from light traffic over the
network during the time of recovery, tolerating disk access
latency. This is not possible in ML-based recovery because
all of its logged data are then stored on the local disk. Both
recovery techniques, however, benefit from the elimination
of synchronization messages and the reduction of memory
miss idle time. Experimental results demonstrate that AL-
based recovery consistently outperforms ML-based recov-
ery by 9% to 17% under parallel applications examined.
Next, we present the implementation of our AL protocol
and AL-based recovery in ADSM.

3.3 Implementation

Figure 2 demonstrates a pseudo code of the ADSM rou-
tines involved in our logging and crash recovery processes.

3.3.1 Failure-Free Execution

During failure-free execution, at a lock acquire, the
sender process creates a volatile log of each shared memory
page that is piggybacked with the lock grant message un-
der the WU protocol. The receiver process records incom-
ing coherence information as a list of up-to-date and dirty



Manager of Memory Page(s)

Barrier

if (in_recovery)

read list of dirty pages from log;
invalidate the pages and/or send

request for the up-to-date copy;

else

if (barrier_manager)

flush log to stable storage;
wait for all other processes

to check-in;
invalidate or update local copy

of page(s) correspondingly;
send barrier release messages

piggybacked with list of
dirty pages and/or
up-to-date copy of pages;

record the pages that have received
an up-to-date copy with an id
of sender process;

else

send check-in message to
barrier manager;

flush log to stable storage;
wait for barrier release message;
invalidate or update local copy

of page(s) correspondingly;

endif

record the pages that have received
an up-to-date copy with an id
of sender process;

endif

if (receive_page_request)

send an up-to-date copy of that page to requesting process;
log contents of an up-to-date copy of that page;

endif

Lock Acquire

if (in_recovery)

read list of dirty pages from log;
invalidate the pages and/or send

request for the up-to-date copy;

else

send lock request to lock manager;
flush log to stable storage;
wait for lock grant message;
invalidate or update local copy

of page(s) correspondingly;

endif

record the pages that have received
an up-to-date copy with an id
of sender process;

Lock Manager

if (receive_lock_request)

send lock grant message
piggybacked with list of dirty
pages for pages under WI
protocol and an up-to-date
copy of pages for pages under
WU protocol;

log contents of those up-to-date
copies of pages;

endif

Note: Bold fonts refer to ADSM protocol operations, while italic ones refer to
operations of our Adaptive Logging and AL-based Recovery Protocols.

Figure 2. Pseudo Code for Adaptive Logging
and AL-based Recovery Protocols.

pages, and then proceeds to lock acquire and coherence en-
forcement routines. Each process also produces a volatile
log of shared memory pages it sends out upon receiving a
page request message. While a list of shared memory page
status has to be flushed to stable storage whenever a process
sends a lock grant message to another process, the volatile
logs need not to be flushed since the sender process can
recreate them even after a process failure occurs.

At a barrier, the producer process of the pro-
ducer/consumer pages creates a volatile log of shared mem-
ory pages it sends to the consumer process(es). This volatile
log is created right after the barrier check-in messages have
arrived and actual shared memory pages have been sent off.
Upon the arrival of these updates, each process produces a
list of pages being updated, and then, incorporates it in a list
of dirty pages, once additional coherence information pig-
gybacked with a barrier release message has arrived. As in
the case of migratory shared data, this list of shared memory
page status is flushed to disk at the next synchronization.

3.3.2 Recovery Process

When a failure is detected, thein recoveryflag is set and
coherence enforcement information (i.e., write-invalidation
notice and the list of pages to be updated) is read from the
local disk, eliminating the need to produce synchroniza-
tion messages again. Once the recovery process passes the
synchronization point (either a lock or a barrier), it han-
dles memory misses as in the case of failure-free execution.
Specifically, a page fault during the recovery process then
generates a memory update request to the manager of that
shared memory page, and updates its local copy of the page
with up-to-date data (i.e., a diff for MW page or a whole
page for SW page) received from the manager.

4. Experimental Methodology

For accurate assessment of logging overhead and crash
recovery performance, we have integrated message logging
(ML) and our adaptive logging (AL) into TreadMarks-based
ADSM [2, 15]. We measured the execution time of ADSM
without logging protocol incorporated, and utilized it to
quantify performance overhead caused by the ML and our
AL protocols. As in earlier work, no checkpointing is done
in the experiments since the goal is to measure the overhead
of logging, and crash recovery performance is obtained by
running parallel applications completely to the end and then
rolling back node 0, which then begins the recovery process
from the log [14, 19].

Our experimental platform is a network of eight SUN
Ultra-5 workstations running Solaris 2.6. Each machine
contains a 270MHz UltraSPARC-IIi processor, a 256 KB
secondary cache, and a 64 MB memory. We also allo-
cated 2G bytes of each local disk for virtual memory pag-
ing (i.e., swap space). The size of a virtual memory page is
8K bytes. The network for connecting these machines is a
100Mbps, full-duplex fast Ethernet switch. ADSM imple-
mentation is based on TreadMarks, a state-of-the-art soft-
ware DSM [3]. TreadMarks adopts the UDP/IP protocol
for interprocess communication, uses the SIGIO signal for
delivering request messages, and relies on the virtual mem-
ory trap (SIGSEGV) for invoking the memory coherence
enforcement mechanism. All message logs are stored in
non-volatile storage (i.e., local disk) for recovery.

Program Data Size Synchronization

3D-FFT 100 iterations on27�27�27 data barriers
CG 200 iterations on140002 sparse matrix barriers
IS 175 ranking of 215 keys locks and barriers
MG 200 iterations on27�27�27 grid barriers
SOR 100 iterations on5K�5K input barriers

Table 1. Applications’ Characteristics.

In this study, we employ five parallel applications as
benchmark programs, among which 3D-FFT, Conjugate
Gradient (CG), Integer Sort (IS), and Multigrid (MG) come



from the NAS benchmark suite [5]. SOR implements a red-
black successive over-relaxation and is distributed together
with TreadMarks. These applications have been selected in
several previous studies of software DSM, e.g., [2, 14, 15,
19]. Table 1 lists application characteristics, including the
data size used and the types of synchronization employed.

5. Experimental Results

The performance comparison of two logging protocols,
message logging (ML) and our adaptive logging (AL), is
made with respect to performance of ADSM without any
logging protocol incorporated. We measured disk usage,
memory overhead, and total execution time to quantify the
overhead of each logging protocol using those five paral-
lel application programs. The crash recovery speeds of the
ML-based and our AL-based recovery are also presented.

5.1 Disk Consumption

Table 2 provides data on disk consumption for each of
the five applications under ML and our AL protocols. It
shows both the number of message logs and the amount of
logged data incurred by each protocol when incorporated in
ADSM. As can be seen, the AL protocol logs only a small
amount of data, ranging from 0.3MB to 5.3MB, whereas the
ML protocol produces a much larger total log size, ranging
from 23MB to 507MB. This is because our AL protocol
leverages the coherence data maintained by ADSM. In par-
ticular, the AL protocol does not store data that can be re-
trieved from the sender process during recovery, while ML
simply keeps all incoming data that affect the shared mem-
ory status.

Message Logging (ML) Adaptive Logging (AL)
Program # of Mesg Log Size (MB) # of Mesg Log Size (MB)

Logged per Process Logged per Process

3D-FFT 92687 357 374 0.7
CG 367171 507 27656 5.3
IS 12566 39 2760 0.5
MG 103933 292 11211 2.6
SOR 6365 23 476 0.3

Table 2. Disk Consumption of Logged Data.

The ML protocol also leads to a larger number of mes-
sages logged, ranging from 6365 to 367171 messages, while
our AL protocol keeps considerably fewer messages, rang-
ing from 374 to 27656 messages. All incoming messages
that change the state of shared memory in ADSM are logged
under the ML protocol, whereas the AL protocol selects to
keep only those messages that are necessary for correct re-
covery. Messages logged under the ML protocol in ADSM
include a write-invalidation notice at each synchronization
point (i.e., lock and barrier), a summary of modifications
(i.e., diff), and an up-to-date copy of each shared memory
page. By leveraging the coherence data of ADSM, the AL
protocol requires to log only write-invalidation notices since
both diff and update data can be retrieved from the sender

process during recovery. This substantial reduction in both
the number of messages logged and the total size of logged
data is due to the fact that the arrival of write-invalidation
notices is not as frequent as the arrival of diff and update
messages, and the size of a write-invalidation notice is typ-
ically smaller than a diff or an update.

5.2 Memory Overhead

The total log size reduction of the AL protocol comes
with higher memory overhead under the SW protocol (i.e.,
under the MW protocol, shared memory pages of ADSM
have a summary of modifications stored in the memory of
the sender process). For shared memory pages under the
SW protocol, our AL protocol creates a volatile log of a
shared memory page at the sender process before it sends
out such an up-to-date copy of a shared memory page to
another process. From our experiment, additional mem-
ory overhead due to our AL protocol is a fraction of mem-
ory overhead due to coherence enforcement protocols of
ADSM. For example, the AL protocol introduces only 1%
additional memory overhead under CG and MG (which use
the MW protocol), it is about 11% under 3D-FFT and IS
(which adopt the SW protocol), and it amounts to roughly
33% under SOR (which also utilizes the SW protocol). It
should be noted that, while our AL protocol gives rise to
additional memory overhead on top of that overhead due
to ADSM coherence enforcement, the additional memory
overhead caused by our AL protocol has little impact on
ADSM performance. This is because the AL protocol uti-
lizes memory solely for recording update messages (sent
out to other processors) which are never read nor modi-
fied again, until the recovery process. When more room
is needed later to hold such messages, the memory contents
are simply swapped out to disks and never swapped back
into memory again, unlike the coherence data maintained by
ADSM, which are read and modified frequently to realize
coherence enforcement, and which are swapped back into
memory whenever such references are needed, contributing
to execution overhead. The volatile log of our AL protocol
thus leads to little penalty in ADSM performance, as will
be demonstrated in the next subsection.

While there is no immediate need to do a garbage col-
lection on the volatile log of our AL protocol (since it does
not affect ADSM performance), we limit our volatile log
size to avoid it from growing unbounded. Garbage collec-
tion associated with our AL protocol is not expensive, as we
minimize the impact of garbage collection overhead by in-
tegrating our garbage collection for the volatile log with the
storage reclamation routine of ADSM, which requires ex-
cessive message exchange among processors. The cleanup
process of our volatile log is therefore overlapped with in-
terprocess communications existing in the storage reclama-
tion routine of ADSM, adding no overhead to ADSM.



5.3 Total Execution Time

Figure 3 depicts the impacts of the ML protocol and our
AL protocol on ADSM performance in terms of the total
execution time. The total execution time of ADSM without
any logging protocol incorporated serves as a performance
baseline for comparison. From the data obtained, our AL
protocol leads to slight execution time overhead, ranging
from 2% to 10% only. This low overhead results directly
from a small log size and a low disk access frequency. By
contrast, the ML protocol increases the execution time dras-
tically by many folds for every application. Such high over-
head is due to recording indiscriminately every incoming
message that changes the state of shared memory pages,
like a write-invalidation notice, which piggybacked with
a lock grant or a barrier synchronization message, a sum-
mary of modifications (i.e., a diff), or an up-to-date copy
of each shared memory page. By leveraging the coherence
data maintained by ADSM, our AL protocol causes only
slight execution time overhead and makes the inclusion of
fault-tolerant capability in ADSM feasible and attractive.

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��

��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��

������

CG IS MG SOR

2500

3000

3500

4000

4500

2000

1500

1000

500

0

3507

ADSM

ADSM + ML

426 447

4270

1117

2617

1502

518

210 310

545570

215
341

582

ADSM + AL

3D-FFT

T
ot

al
 E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Figure 3. Impacts of Logging Protocols on
ADSM Performance.

5.4 Recovery Performance

Figure 4 shows the performance of ML-based recovery
and our AL-based recovery after node 0 fails and is rolled
back to start recovery from the initial state. We employ the
crash recovery time of ADSM without any logging proto-
col (i.e., Re-Execution) as a performance baseline in this
comparison. According to the data presented, ML-based re-
covery and our AL-based recovery are able to save consid-
erably execution time during the recovery process, in most
parallel applications examined. Specifically, ML-based re-
covery reduces the recovery time by 40% for 3D-FFT, by
28% for CG, by 33% for IS, and by 28% for MG; it slightly
increases the recovery time for SOR (i.e., 10% increase),
where the computation to communication ratio is very high.
This stems from the fact that without the checkpointing pro-
tocol incorporated, all computation has to be repeated. In

the case of SOR, the overhead of reading logged data from
a local disk in ML-based recovery outweights the benefits
due to synchronization message elimination and memory
miss idle time reduction. For our AL-based recovery, it con-
sistently outperforms ML-based recovery, reducing the re-
covery time by 52% in 3D-FFT, by 42% in CG, by 49% in
IS, and by 45% in MG, when compared with re-execution.
It does not shorten the recovery time of SOR. Our AL-based
recovery also benefits from synchronization message elimi-
nation and memory miss idle time reduction (due to lighter
traffic over the network during recovery).

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
�� ������

3D-FFT CG IS MG SOR

100

0

200

300

400

500

600

426

518

210

310

545

Re-Execution ML-based Recovery AL-based Recovery

255

204

373

300

141
107

224

171

599

550

R
ec

ov
er

y 
T

im
e 

(s
ec

on
ds

)

Figure 4. Recovery Performance Shown using
Normalized Execution Time.

6. Conclusions

We have dealt with a new, efficient logging protocol
for adaptive software DSM, called ADSM, in this paper.
The experimental outcomes demonstrate that our adaptive
logging (AL) protocol incurs low failure-free overhead,
roughly 2% to 10% of ADSM normal execution time, and
that our AL-based recovery reduces the recovery time by
42% to 52%, except for SOR (whose computation to com-
munication ratio is very high). This results directly from
taking advantage of coherence data managed by ADSM so
as to keep only information nonexistence for ADSM coher-
ence but indispensable for fast and correct recovery. Our
AL protocol and AL-based recovery are readily applicable
to arrive at recoverable ADSM systems effectively.

Acknowledgements

The authors would like to thank Luiz Rodolpho Monnerat, Ri-
cardo Bianchini, and the TreadMarks group at Rice University, for
helping us with understanding their adaptive software DSM imple-
mentation. This work was supported in part by NSF under Grants
CCR-9803505 and EIA-9871315.

References

[1] S. Adve and K. Gharachorloo. Shared Memory Consistency
Models: A Tutorial.Computer, 29(12):66–76, Dec. 1996.



[2] C. Amza, A. L. Cox, S. Dwarkadas, L.-J. Jin, K. Rajamani,
and W. Zwaenepoel. Adaptive Protocols for Software Dis-
tributed Shared Memory.Proceedings of the IEEE, pages
467–475, March 1999.

[3] C. Amza, A. L. Cox, S. Dwarkadas, P. J. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks:
Shared Memory Computing on Networks of Workstations.
Computer, 29(2):18–28, February 1996.

[4] C. Amza, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
Software DSM Protocols that Adapt between Single Writer
and Multiple Writer. InProc. of the 3rd IEEE Symp. on
High-Performance Computer Architecture (HPCA-3), pages
261–271, February 1997.

[5] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The
NAS Parallel Benchmarks. Technical Report RNR-91-002,
NASA, January 1991.

[6] A. Borg, J. Baumbach, and S. Glazer. A Message System
Supporting Fault-Tolerance. InProc. of the 9th ACM Symp.
on Operating Systems Principles (SOSP’83), pages 90–99,
October 1983.

[7] M. Costa, P. Guedes, M. Sequeira, N. Neves, and M. Cas-
tro. Lightweight Logging for Lazy Release Consistent Dis-
tributed Shared Memory. InProc. of the USENIX 2nd Symp.
on Operating Systems Design and Implementation (OSDI),
pages 59–73, October 1996.

[8] S. Dwarkadas, P. J. Keleher, A. L. Cox, and W. Zwaenepoel.
Evaluation of Release Consistent Software Distributed
Shared Memory on Emerging Network Technology. InProc.
of the 20th Annual Int’l Symp. on Computer Architecture
(ISCA’93), pages 244–255, May 1993.

[9] E. N. Elnozahy and W. Zwaenepoel. On the Use and Imple-
mentation of Message Logging. InProc. of the 24th Annual
Int’l Symp. on Fault-Tolerant Computing (FTCS-24), pages
298–307, June 1994.

[10] K. Gharachorloo, D. E. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. L. Hennessy. Memory Consistency and
Event Ordering in Scalable Shared-Memory Multiproces-
sors. InProc. of the 17th Annual Int’l Symp. on Computer
Architecture (ISCA’90), pages 15–26, May 1990.

[11] D. B. Johnson and W. Zwaenepoel. Sender-based Message
Logging. InProc. of the 17th Annual Int’l Symp. on Fault-
Tolerant Computing (FTCS-17), pages 14–19, July 1987.

[12] T. T-Y. Juang and S. Venkatesan. Crash Recovery with
Little Overhead. InProc. of the 11th Int’l Conf. on Dis-
tributed Computing Systems (ICDCS-11), pages 454–461,
May 1991.

[13] P. J. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory. In
Proc. of the 19th Annual Int’l Symp. on Computer Architec-
ture (ISCA’92), pages 13–21, May 1992.

[14] A. Kongmunvattana and N.-F. Tzeng. Lazy Logging and
Prefetch-Based Crash Recovery in Software Distributed
Shared Memory Systems. InProc. of the 13th Int’l Parallel
Processing Symp. (IPPS’99), pages 399–406, April 1999.

[15] L. R. Monnerat and R. Bianchini. Efficiently Adapting to
Sharing Patterns in Software DSMs. InProc. of the 4th
IEEE Symp. on High-Performance Computer Architecture
(HPCA-4), pages 289–299, February 1998.

[16] T. Park and H. Y. Yeom. An Efficient Logging Scheme for
Lazy Release Consistent Distributed Shared Memory Sys-
tems. InProc. of the 12th Int’l Parallel Processing Symp.
(IPPS’98), pages 670–674, March 1998.

[17] G. G. Richard III and M. Singhal. Using Logging and Asyn-
chronous Checkpointing to Implement Recoverable Dis-
tributed Shared Memory. InProc. of the 12th Int’l Symp.
on Reliable Distributed Systems (SRDS-12), pages 58–67,
October 1993.

[18] R. E. Strom and S. Yemini. Optimistic Recovery in Dis-
tributed Systems. ACM Trans. on Computer Systems,
3(3):204–226, August 1985.

[19] G. Suri, B. Janssens, and W. K. Fuchs. Reduced Over-
head Logging for Rollback Recovery in Distributed Shared
Memory. InProc. of the 25th Annual Int’l Symp. on Fault-
Tolerant Computing (FTCS-25), pages 279–288, June 1995.

[20] K.-L. Wu and W. K. Fuchs. Recoverable Distributed Shared
Virtual Memory. IEEE Trans. on Computers, C-39(4):460–
469, April 1990.


