CMPS 561
Boolean Retrieval

Ryan Benton
Sept. 7, 2011
Algorithms for Intersection
Algorithms – Basic Intersection (aka Merging)

- Intersect(p1, p2)
 - answer \(\leftarrow\) {}
 - While \((p1 \neq \text{NIL})\) and \((p2 \neq \text{NIL})\) Do
 - if \(\text{docID}(p1) = \text{docID}(p2)\)
 - Then ADD(\(\text{answer}\), \(\text{docID}(p1)\))
 - p1 \(\leftarrow\) next(p1)
 - p2 \(\leftarrow\) next(p2)
 - Else if \((\text{docID}(p1) < \text{docID}(p2))\)
 - Then p1 \(\leftarrow\) next(p1)
 - Else p2 \(\leftarrow\) next(p2)
 - Return answer
Algorithms – Intersection

• **Complexity:** $O(x + y)$
 – For any given two posting lists
 • List A has size x
 • List B has size y
 – Note, this is upper bound.

• **Formally, Complexity:** $\Theta(N)$
 – N can be either
 • Number of documents in collection
 – Note, this is a tight bound.
Observation

• In many cases, Boolean queries
 – Conjunctive in nature
• Allows for a possible improvement based on posting size (term frequency)
Algorithms – Conjunctive Query Merging

- IntersectConjunct(\(t_1, t_2, ..., t_z\))
 - Terms \(\leftarrow\) SortByIncreasingFrequency((\(t_1, t_2, ..., t_z\)))
 - Results \(\leftarrow\) postings(first(Terms))
 - Terms \(\leftarrow\) rest(Terms)
 - while (Terms != NIL) and (Results != NIL) Do
 - Results \(\leftarrow\) Intersect(result, postings(first(Terms)))
 - Terms \(\leftarrow\) rest(Terms)
 - Return Results
Why?

• By using least frequent term
 – All results guaranteed to be no larger than least frequent term

• In practice
 – The ‘intermediate’ list always places upper bounds on the size.
References

• Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, *Introduction to Information Retrieval*, Chapter 1, 2008.

• Vijay V. Raghavan’s Notes/Lecture Material
 – Material in Slides ued with permission