$$S = (\mathcal{D}, \geq, Q, \geq^*, T, V, F)$$

- ≥ preference on document representations
- ≥* preference on query representation
- (\mathcal{I}, \geq) defines the document space
- (\mathcal{I}, \geq^*) defines the query space

ALL IN THE CONTEXT OF ONE USER NEED

Learning in Vector Model using Relevance Feedback

Optimal Query Formulation

$$\underline{\mathbf{q}} = (\underline{\mathbf{q}}_{1}, \underline{\mathbf{q}}, \dots \underline{\mathbf{q}}_{n})$$

$$\underline{\mathbf{d}}_{\alpha} = (\mathbf{W}_{\alpha 1}, \mathbf{W}_{\alpha 2}, \dots \mathbf{W}_{\alpha n})$$
choose q s.t.

$$\underline{\mathbf{d}}_{\alpha}\underline{\mathbf{q}}^{\mathrm{T}} = \begin{cases} \succeq 0, & \text{if } \underline{d}_{\alpha} \in REL \\ \prec 0, & \text{if } \underline{d}_{\alpha} \in NREL \end{cases}$$

for
$$\alpha = 1, 2, ..., p$$

In the following we apply the "conversion" operation for \underline{d}_{α} to get $\frac{\Lambda}{\underline{d}_{\alpha}}$

Let
$$\underline{\hat{d}}_{\alpha} = \begin{cases} \underline{d}_{\alpha}, & \text{if } \underline{d}_{\alpha} \in REL \\ -\underline{d}_{\alpha}, & \text{if } \underline{d}_{\alpha} \in NREL \end{cases}$$

$$\hat{W} = \begin{pmatrix} \frac{\hat{d}}{\hat{d}_2} \\ \bullet \\ \bullet \\ \frac{\hat{d}}{\hat{d}_p} \end{pmatrix}$$

$$\mathbf{O} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\hat{W}\underline{q}^T \succ \underline{0}$$

- Find the best possible <u>q</u>
- Relevance feedback

PROBLEM STATEMENT

Find \underline{q} such that $J_p(\underline{q})$ is minimized Subject to

 $\hat{\underline{d}}_{\alpha} \underline{q}^T \succ 0$

for all α

This is a system of linear in equalities

Geometrical PR

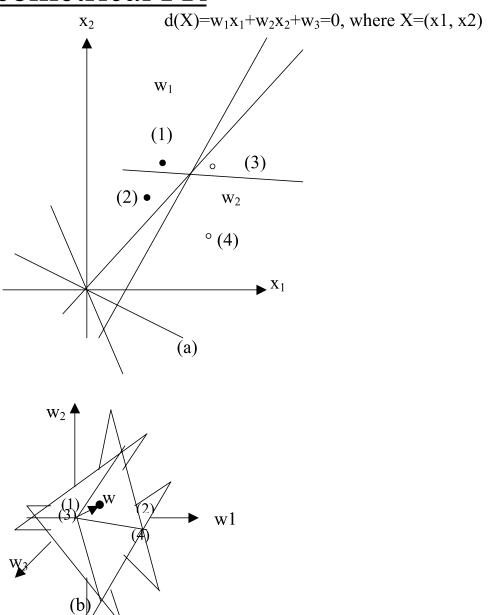
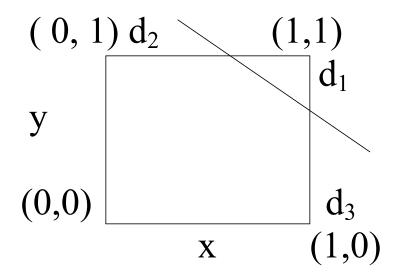


Figure 2.5. Geometrical illustration of the pattern space and the weight space.

(a) Pattern space. (b) Weight space



(1,1) REL
$$\leftarrow \underline{d}_1$$

(0,1) NREL $\leftarrow \underline{d}_2$
(1,0) NREL $\leftarrow \underline{d}_3$
(0,0) NREL

$$\hat{d}_1 = (1,1,1)$$
 $\hat{d}_2 = (0,-1,-1)$
 $\hat{d}_3 = (-1,0,-1)$

homogeneous coordinate representation

ITERATIVE (DESCENT)

PROCEDURES

- Instead of a "batch" approach, here we consider an iterative approach.

$$\underline{\mathbf{q}}^{(k+1)} = \underline{\mathbf{q}}^{(k)} - \rho_k \frac{\partial J(\underline{q})}{\partial q} | \underline{q} = \underline{q}^{(k)}$$

 ρ_k - grain factor of step (iteration) k

Many forms of $J(\underline{q})$ are possible. d_{α} is misclassified if $\hat{a}_{\alpha}q^T \le 0$

Let
$$y(\underline{q}) = \{ \underline{\hat{q}}_{\alpha} | \underline{\hat{q}}_{\alpha} \underline{q}^T \leq 0 \}$$

Perception criterion Function

$$J_{p}(\underline{q}) = -\sum_{\hat{d}_{\alpha} \in y(q)} \underline{\hat{d}}_{\alpha} \underline{q}^{T}$$

Taking a derivative of $J_p(\underline{q})$ with respect to \underline{q} yields: $\frac{\partial J_p(\underline{q})}{\partial \underline{q}} = \frac{\sum \hat{\underline{d}}_{\alpha} \underline{q}}{2}$

We, therefore, adjust
$$\underline{\mathbf{q}}(\mathbf{k})$$
 by $-\sum_{\underline{\hat{d}}_{\alpha}} \underline{\hat{d}}_{\alpha} \in y(\underline{q}^{k})$

$$\underline{\mathbf{q}}^{(k+1)} = \underline{\mathbf{q}}^{(k)} + \rho_{k} \sum_{\underline{\hat{d}}_{\alpha} \in y(\underline{q}^{k})} \underline{\hat{d}}_{\alpha}$$

q^k is modified w.r.t.
 a set of training
 samples (documents)
 -- learning is by epoch

$$\begin{split} \underline{q}^{(k+1)} &= \underline{q}^{(k)} + \rho_k \underline{S} \\ where \ \underline{S} &= \{ \frac{\underline{0}, \textit{ifd}_{\alpha} \textit{is}}{\underline{\hat{d}}_{\alpha}, \textit{otherwise}} \ \textit{correctly classified} \end{split}$$

-- learning is by sample $0 < \rho_k \le 1$

PERCEPTRON CRITERION

$$\mathbf{J}_{\mathbf{p}}(\mathbf{q}) = \sum_{\underline{\hat{d}} \in y(\underline{q})} \underline{\hat{d}} \underline{q}^{T})$$

where $y(\underline{q})$ is the set of training vectors <u>misclassified</u> by \underline{q}

Training by Epoch PERCEPTRON CONVERGENCE ALGORITHM (PCA)

- (1) k=0; Choose initial query vector \underline{q}^0
- (2) Determine y (q^k)
- (3) If $y(\underline{q}^k) = \phi$, terminate

(3) If
$$y(\underline{q}) = \varphi$$
, terms
$$\underline{q}^{k+1} = \underline{q}^k + \rho_k \sum_{\underline{\hat{d}} \in y(q_k)} \underline{\hat{d}} \in y(q_k)$$

 $_{(5)}$ k= k+1, go to step (2)

linearizability

Theorem: PCA will terminate if linearizability property holds for the training data. EX.

$$\underline{d}_{1} = (1,1,0,1,1) \} NREL$$

$$\underline{d}_{2} = (1,0,1.0,1)$$

$$\underline{d}_{3} = (0,1,1,0,1)$$

$$\underline{d}_{4} = (0,1,0,1,1) \} NREL$$

$$\underline{d}_{4} = (0,1,0,1,1) \} NREL$$

$$\frac{\hat{d}}{\hat{d}}_{1} = (-1, -1, 0, -1)$$

$$\frac{\hat{d}}{\hat{d}}_{2} = (1, 0, 1, 0, 1)$$

$$\frac{\hat{d}}{\hat{d}}_{3} = (0, 1, 1, 0, 1)$$

$$\frac{\hat{d}}{\hat{d}}_{4} = (0, -1, 0, -1)$$

$$\underline{q}^0 = (0,0,0,0,0)$$

$$y(\underline{q}^0) = (all of them)$$

$$\underline{q}^1 = (0,-1,2,-2,0)$$

let $\rho_k = 1$

$$y(\underline{q}^1) = \phi$$

$$\underline{\mathbf{q}}^{\text{opt}} = (0,-1,2,-2,0)$$