Retrieval System Evaluation Using Recall-Precision <Problems and solutions>

Concept of Recall:
“Retrieve as many relevant items as possible”

Concept of Precision:
“Retrieve as few non-relevant items as possible”

Recall & Precision are measured after the system determines an ordering on the documents in its collection in response to a user query.

Two problems
(1) When system generates a weak ordering of the documents as the output.
- Some notions like probability of relevance given retrieved or expected precision have to be introduced.
(2) When a set of queries is involved and we want to evaluate the overall retrieval results based on this given set of queries.
- Some techniques of interpolation of precision values are needed.
<table>
<thead>
<tr>
<th></th>
<th>Rel</th>
<th>NREL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ret</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Not Ret</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

\[a + b \]

\[a + c \]

\[\text{Recall} = \frac{a}{a+c} \]

\[\text{Precision} = \frac{a}{a+b} \]

\[\text{Fallout} = \frac{b}{b+d} \]

Often, paired measures are used, e.g. (R, F) pairs or (R, P) pairs.

\[\text{Classification Error} = \frac{b + c}{a + b + c + d} \]
Two types of ordering of the RSL

linear (simple) ordering: Every item in the collection is assigned a distinct RSV by the similarity function used.

weak: More than one item may be present at the same level with identical RSV.

Stopping Criteria: Criterion to stop after retrieving a given # of relevant documents.

(ex) n relevant documents with respect to a given query assuming that the stopping criterion is the retrieval of h relevant documents $1 \leq h \leq n$

$\Rightarrow \exists n$ possible recall levels

$1/n, 2/n, \ldots h/n, \ldots n-1/n, 1$

These are called simple recall levels.
Problem of Weak Ordering

NR: # of relevant documents needed to retrieved for a given query with n relevant documents

\[0 \leq NR \leq n \]

If the ordering is linear, for any recall point NR/n precision is defined as NR/(NR+NNR)

Where NNR = #of non-relevant documents being retrieved along with the NR relevant documents we need.

<table>
<thead>
<tr>
<th>Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>NR- S</th>
<th>S</th>
<th>f</th>
<th>(final rank)</th>
</tr>
</thead>
</table>

Suppose there are r relevant documents and i non-relevant documents at the final rank

It could be imagined that r relevant docs from r intervals and i nonrelevant docs at the same rank are uniformly distributed among r intervals.
Hence, for every relevant document retrieved i/r non-relevant documents is expected to be retrieved.

\[NNR = j + s \times \frac{i}{r} \]

\[j : \# \text{ of non-relevant docs in ranks above the final rank.} \]

\[s : \# \text{ of relevant docs wanted from the final rank.} \]

\[\text{precision} = \frac{NR}{NR + j + s \times \frac{i}{r}} \quad \ldots (1) \]

** the problem associated with the above approach is that the validity of the guess concerning the likely distribution of relevant and non-relevant documents at the final rank is questionable.

** Problem of Multiple Query

We want to average the precisions of several queues at a recall point.

The simple recall levels (i.e., \(1/n, 2/n, \ldots n-1/n, 1\)) can not be used.

Conventional choice for standardized recall levels is \(0, 0.05, 0.1, \ldots, 0.95, 1\).
Let x be one of the standardized recall levels $h/n \leq x \leq (h+1)/n$ and $0 \leq h \leq n$

Then the precision value at point x is assigned the value at the simple recall point $(h+1)/n$. This method is termed as the ceiling interpolation, since the precision value at the point $x*n$ is same as $\lceil x*n \rceil$

Precision = $\lceil x*n \rceil / (\lceil x*n \rceil + j + s*i/r)$

This is called Precall with ceiling interpolation

The problem: (1) The precision value by ceiling interpolation does not conform to the general behavior one intuitively expect.

The resulting graph is a step function.
(2) Evaluation results are difficult to interpret.

PRR

Ceiling interpolation

\[-x*n / (-x*n + j + s*i/r+1)\]

preferred interpolation

\[x*n / (x*n + j + s*i/r+1)\]

PRECALL

Ceiling interpolation

RB-Precision preferred interpolation

In case \(x*n\) is an integer, ceiling interpolation and preferred interpolation give the same result for precision.
Example:

\[\Delta = (+- -| + + +_) \]

Recall level \(\Rightarrow 0.5 \) (s=1)

\[\frac{2}{2+2+4/3} = 2 \times \frac{3}{16} = \frac{3}{8} \]

\[
\begin{array}{l}
\text{Recall level } \Rightarrow 0.75 \text{ (s=2)} \\
3/(3+2+8/3) = 9/23 \\
\text{Recall level } \Rightarrow 1 \text{ (s = 3)} \\
4/ (4+2+4) = 2/5
\end{array}
\]

Recall level \(\Rightarrow \)

\[
\text{NR/ (NR+NNR)} \\
\text{NNR = j + s*i/r} \\
i = 4 \\
r = 3
\]

\[\frac{3}{3+2+8/3} = 9/23 \]
Recall level $\rightarrow 0.3$ (ceiling interpolation)

$\neg0.3 \times 4\neg/(\neg0.3 \times 4\neg +2 +4/3) = 3/8$

Note: $s=1$

Preferred Interpolation

$1.2/(1.2+2+0.2\times4/3)$

$=1.2\times3 / 10.4$

$= 3.6 / 10.4$

$=18 / 52$

$= 9 / 26$