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Notations and definitions necessary to identify the con-
cepts and relationships that are important in modelling
information retrieval objects and processes in the con-
text of vector spaces are presented. Earlier work on the
use of vector model is evaluated in terms of the con-
cepts introduced and certain problems and inconsisten-
cies are identified. More importantly, this mvestlgatlon
should lead to a clear understanding of the issues and
problems in using the vector space model in informa-
tion retrieval.

1. Introduction

Information Retrieval (IR) is a discipline involved with
the organization, storage, retrieval, and display of biblio-
graphic information. IR systems are designed with the
objective of providing, in response to a user query, refer-
ences to documents which would contain the information
desired by the user.

Thus, in this environment there exists a collection of
documents (e.g., books, journal articles, technical re-
ports, etc.). There is also a group of users. The informa-
tion need (at a particular time) of a user can be met by his
reading one or more of the documents. The notion of rele-
vance is central to any reasonable formulation of this re-
trieval problem. A document may or may not be relevant
to a user query depending on many variables concerning
the document (e.g., its scope, how it is wntten) as well as
numerous user characteristics (e.g., why the search was
initiated, user’s previous knowledge). In any case, what-
ever the IR system does, if a document is judged by the
user to be of interest, it is relevant; it is nonrelevant other-
wise. Since many factors determine the judgement con-
cerning relevance in a complex way, it is recognized that
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an IR system cannot precisely select only and all relevant
documents. Rather, it is proposed that the system should
adopt methods that facilitate the ranking of documents
in the order of their estimated usefulness to a user query
[1].

It is common in IR to represent each document by -
means of keywords or index terms. These are usually de-
rived from the text or some surrogate (e.g., abstract)
through a process of indexing. In addition to the selection
of terms to represent documents, it is common to also as-
sociate weights that reflect the importance of each term
as an indicator of the content of the documents to which
it is assigned. Thus, in designing search strategies, it is
reasonable to consider a document-by-term matrix as the
information one starts with, where the (i, r)th element of
the matrix corresponds to the weight of term i in docu-
ment r [2]. In what follows, we denote this matrix by D,
having elements d,s.

Given the matrix D and our desire to rank documents,
there are several different ways to model the search prob-
lem. One approach which has been widely used over the
years, models documents and queries as vectors [2,3].
Here, d;, is considered to be the ith component of the vec-
tor representing the rth document. When a query is pre-
sented, the system formulates the query vector and
matches it against the document vectors based on a cho-
sen method of determining similarity between vectors.
For example, similarity between the query and a docu-
ment may be defined as the scalar product of the corre-
sponding vectors and the documents could be ranked in
the decreasing order of this measure.

2. Motivation

In general, the use of vector space model requires the
specification of several aspects. For example, an inter-
pretation of the values in D, the dimension of the space,
the set of basis vectors, and correlations between term
vectors (if they are not orthogonal), are important in ob-
taining an appropriate representation of queries and doc-
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uments. In order to simpliify the problems associated with
the above requirements, other researchers adopting this
model assume that:

() dimension of the vector space is n, where » is the
!'r?lfh‘\bel‘ of dmmétﬁew ..,lén
‘(i) “tetm vectors arb pmmls&auﬂog al, and
(m) d; s are the components of document r along the
3 ¢ diregtian of term vector i [2].

Altﬁough ‘the' assunfptlon-thariﬁeftékéns are pairwise
orthogonal is not realistic. it has been considered accept-
ablefas;a first approxjmation. In;facg, many useful and
mte%sﬂﬂg results have been, ob,tzjed‘ spite the simpli-
fying assumptions [2-4].

While there may be good justification for starting an
investigation with a simple model, one should not com-
pletely ignore the general case. In other words, if the gen-
eral model is not clearly visualized in terms of the various
concepts and interactions involved, there can be difficul-
ties in not only recognizing the real implications of the
special case, but also in subsequent attempts to deal with
the general case. We believe that the way in which the
vector space model has been introduced and used in IR
has suffered difficulties of the sort mentioned above. For
example, in order to relax the assumption that terms are
pairwise orthogonal, term co-occurrence information has
been used and some methods of computing term correla-
tions suggest that the rows of D can be viewed as vectors
corresponding to the terms, i.e., ¢; = (d;;, diz, . . ., din)-
However, we demonstrate in this paper that representing
terms as rows of D is not consistent with representing
documents as the columns of . In other words, opera-
tions and concepts needed for certain aspects were intro-
duced without analysing their impact on other operations
and concepts already in place. Such an inconsistency
could not be resolved even under the restricted environ-
ment that is obtained when the assumptions mentioned
earlier are made. In this sense, we believe that if the ear-
lier work is not to be deemed inconsistent, then a way out
is to say that the vector space model was not intended as a
formal model of IR concepts and processes, but rather
vectors were used as a notational convenience.

In order to establish these assertions, we introduce the
notations and definitions necessary to identify the con-
cepts and their relationships that are important for the
use of vector space model in IR. Then we point out some
of the ways in which the traditional practices are in con-
flict with the premises of the vector space model. The
considerations, naturally, lead to how things might have
been done differently. More importantly, it is felt that
this investigation will lead to a clear understanding of the
issues and problems in using the vector space model in
information retrieval.

In addition to the new insight one gains about the
modeling of information retrieval objects, their relation-
ships and processes, the current work is also significant
in that it lays the groundwork for a model that is reminis-
cent of that used in the WEIRD system by Koll [S]. More
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specifically, both terms and documents are representd
as a combination (or ““mean” location) of term vectors or
concepts that they contain. Similarly, terms may be
viewed as a combination of documents or concepts. It is
also possible to investigate the problem of dimensionality
and identify a subspace of fewer dimensions than the
number of distinct index terms.

3. The Vector Space Model

The basic premise of adopting the vector space model
is that the various information retrieval objects are mod-
eled as elements of a vector space. Specifically terms,
documents, queries, concepts and so on are all vectors in
the vector space. The existence of a vector space implies
that we have a system with linear properties: the ability to
add together any two elements of the system to obtain a
new element of the system and the ability to multiply any
element of the system by a real number. Furthermore,
the vectors obey a number of basic algebraic rules or axi-
oms (e.g.,x +y =y + x, for any vectors x, y). Note that
a letter by itseif in italics denotes a vector. There are a few
exceptions to this convention (e.g., m, n, and subscripts)
and should be clear in context.

Let us first consider the issue of representation of doc-
uments in terlng‘gfjhﬁindeuem. Lett,, t;, . ..t,be
the terms used to represent documents. Corresponding to
each term, 7;, suppose there exists a vector ¢, in the space.
Without loss of generality, it is assumed that ¢;s are vec-
tors of unit length Now, suppose that each document D,,
1 < r < m, is a vector expressed in terms of t;s. Let the
document vector D, be D;=(a,,, a3, . .'a,,), where
a;,s are real numbers reflecting the 1mportance of term /
in D,. Since it is sufficient to restrict our scope of discus-
sion to the subspace spanned by the term vectors, the ¢;s
can be thought to be the generating set. Every vector in
this subspace, and in particular all document vectors, are
linear combinations of the term vectors. Thus, D, can be,
equivalently, expressed as:

n

D, = 'gl a;,t;. (D

The coefficients a,, for1 =i <nand1 =<r <m,are the
components of D, along the ¢s.

We next introduce one of the most important concepts
in vector spaces, that of linear dependence. A set of vec-
tors yy, y2, . . . yi are Iinmf there exist
some scalarsa,, a,, . . . a, (not all as are zero) such that:

ay, +ay, + Tt oagy = 0.

Using several known theorems in linear algebra (6], it
can be seen that:

(i) {¢y, t3, . . .t,} being the generating set for our
space implies that any set of linearly independent
vectors in this space contains at most n vectors,
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(il) because a hasis is a generating set consisting of
linearly independent vectors. any basis of this
space has at most n# vectors and. hence. the di-
mension is at most 1,

(iii) it is always possible to obtain a basis from a finite
generating set by eliminating vectors dependent
upon others,

(iv) given a basis, {ty, t5, . . . 1, }, forn’ < n, any
vector x in the space has a unique expansion of
the form:

(v) if {¢t,, 25, .. .t, }isabasis of our space, then any
n’ linearly independent vectors will form a basis,
and the dimension of the subspace is n".

Thus, not only can documents be expressed as a linear
combination of terms, but also terms as a linear combi-
nation of documents. The latter is true, of course, assum-
ing there exists the necessary number of linearly indepen-
dent documents. Notationally, if {D,, D,, ... D, }isa
basis, each term, t,;, has an expression of the form:

n’

ti = E briDn

r=

t=12,...n). (2)

Clearly, we can also have documents expressed as a linear
combination of a basis consisting of only documents. In
fact, a basis could be made up of documents and terms
mixed together because both of them are elements in the
vector space.

Another important concept in this context is that of a
scalar product. Given a vector space, V, by the scalar
product x - y of two vectors x, y € V, we refer to the quan-
tity |x||y| cos©, where | x| and |y| are the lengths of the
two vectors and © is the angle between x and y. A vector
space equipped with a scalar product is called a Euclid-
ean space.

The following definitions involving scalar products are
well known:

() |x| = V(x-x),

(ii) any vector x # 0 can be normalized; i.e., x can be
replaced by a proportional vector of unit length
given by x/|x|,

(iii) (x/|x]|)-y is the projection of vector y onto the
vector x,

(iv) vectors x and y in a Euclidean space are ortho-
gonal ifx-y =0,

(v) a basis such that the vectors are mutually ortho-
gonal and each vector is normalized is called an
orthonormal basis.

4. Important Concepts and Relationships for
Applying Vector Space Model in Information
Retrieval

For reasons of clarity, in this and the next sections, it
is assumed that the number of terms is equal to the di-

mension of the subspace of interest. and that the number
of documents are exactly the same as the number of
terms, i.e.., n’ = n = m. Recall, also. that the term vec-
tors ¢y, ty, . . . t, are normalized. Furthermore. we as-
sume that the set of documents as well as the set of terms
form a basis. Note, however, that the vectors in each set
are not assumed to be pairwise orthogonal.

A. Computation of Similarity Measures between
Documents and Query

From Eq. (1), we have
r=1,2,...n). (3)

For any query g, the corresponding query vector has the
expression

In the general case, the scalar product, which we suppose
is the measure of similarity between two vectors D, and g,
is: T

D,'q = El a;,q;ti"t;. ) (4)

ij=

B. Projectio onents

Next we consider certain important relationships be-
tween components, projections, and the scalar products.
In the general case, where the basis vectors are not as-
sumed to be pairwise orthogonal, components of docu-
ments along the term vectors are related to the corre-
sponding projections via the term-term similarities. By
multiplying Eq. (3)by¢;, (j = 1,2, . . . n), on both sides,
we obtain a system of linear equations:

tj‘D, = i§| a;,t,-'t,-, (_], r=1,2,... n). (5)

Since 1,5 are unit vectors, the scalar product ¢;* D, is the
projections of D, onto ¢;. Eq. (5) can be rewritten in a
matrix form as follows:

P = G/A, 6)
where
(P), =t;-D,,
(G);i = t;*t;, and

(A)ir = A
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That is. G, is the matrix of correlations* between term
vectors. and the rth column of A represents the compo-
nents of D, along the vector ¢;s.

Example 1. Consider a vector space with dimension
n = 2. In Figure 1, let 1, and ¢, represent the term basis
vectors, and D,, D, the document basis vectors. As in
Eq. (3), each document vector D, can be expressed as:

D, = a .t + as.ty, (r= 1, 2).

The projection matrix P [defined in Eq. (6)] is given by

t|'D| tl'Dz
Lt2°Dy ty0 D,

ti-(apt, + ayty) ty-(ant, + ant)

Lt2(ayty + ayty) tyr(apt, + anty)
tisty tycty| |ay ap

= . = G,A. a
L2728yttt [Aay; A

Similar to Eq. (6), a number of other relationships can be
identified between document-document similarities, the
projections of documents along terms, and certain other
quantities inherent to the model. In what follows, we
highlight the more important connections among those.

If we multiply Eq. 3) by D,, (r = 1,2, . . . n), on both
sides, we obtain

n

D‘-Dr='§| a;,D,'t;, (r,s=1, 2,-.."),

Aqr t1

— 44D

F1G. 1. Two-dimensional vector space with ¢;s as basis.
—e e -

*The word correlation is not intended to mean statistical correla-
tions. The elements are term-term similarity measures. The values
would range between —1 to +1, with zero value corresponding to the
case when term vectors are orthogonal to each other.

which can be rewritten as
G(/ = P'A, (7)

where (G,),, = D,- D, is the matrix of (unnormalized)
document correlations, and P’ is the transpose of P.

Similarly starting with Eq. (2), multiplying both sides
byD,,(s=1,2,...n),and¢;,(j=1,2,...n), respec-
tively, we obtain the following matrix equations:

P’ = G,B, (8)
G, = PB, 9

where (B),, = b,;. The ith column of B represents the
components of z; along the directions of the various D,s.

Example 2. Consider a two-dimensional vector space
as in Example 1. In this case, the term vector ¢; is ex-
pressed as a linear combination of the document basic
vectors D and D,. Again, the transpose of the projection
matrix, P, can be rewritten to illustrate the meaning of
Eq. (8)

-t|‘D| ty'D,
P’ =
(ti*Dy t,-D,
r(bnl)x + byDy)-D, (b;;Dy + byDy)-D,
[(byDy + by Dy)-Dy (b,Dy + byDy)-D,
_ Dl'D| DZ'DI bll blZ
DDy D, Dy |by by
= GdB. O

5. Vector Space Model in Information Retrieval—
Choices and Implications

Given the concepts and notations in the earlier sec-
tions, we are now prepared to discuss a spectrum of op-

FIG. 2. Two-dimensional vector space with D,s as basis.
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tions available in terms of how the model can be applied.
In the presentation of the vector space model (Section 3),
our interest in modeling IR objects and processes was im-
mediately recognized. However. we did not concern our-
selves with what information would be available, and to
what element of the model that information would be
mapped. In other words, we basically looked at the kinds
of concepts and relationships that one would have to
work with. In this sense, the earlier discussions are ab-
stract.

Some of the model elements identified are the compo-
nent matrices A, B, the projection matrix P, and the
term-term and document-document correlation matrices

G, and G,. Since these are related, not all of these matri-
ces need be known. Thus, one question that arises is,
what should we know as a minimum? By a minimum, we
mean that we must at least be able to rank documents in
the order-of their similarities to a given request. That is,
the computation specified in Eq. (4) is of primary inter-
est.”Another issue that is equally important, once we
specify what data we have about our documents and que-
ries, is that of deciding which of that data should be
mapped to what element of the model. This latter issue
can be thought of as one of interpretation.

As in Section 4, we assume that D,, D,, . . . D, as well
asty, ty . . .t, are (separately) linearly independent sets
of vectors that span the subspace of interest. This is
needed merely for ease of exposition since, in linear alge-
bra, there is a well known theorem which says that a max-
imal linearly independent set can always be selected from
a linearly dependent set [6]. We will, however, consider
the case of a linearly dependent set of vectors in the next
section.

A. Only Term Frequency Data is Known

In the introduction it was mentioned that it is common
in IR environment to know just the occurrence frequen-
cies of each index term in the documents of a collection.
Let D refer to the matrix of term frequencies, where the
(i, r)th element, d,, is the frequency of occurrence of
term / in document r.

Assuming that this and the query representation are
all we know, the following option comes to mind.

(1) The Standard Vector Model. D is interpreted to
correspond to the component matrix A (i.e., d; is a;,, the
component of D, along ¢;). A problem that is well recog-
nized is that knowing matrix A alone is not enough. Spe-
cifically, referring to Eq. (4), we cannot determine docu-
ment-query correlation since t;-¢;s are not known.
Therefore, in the standard vector model the assumption
thatt;-t; = 1if i =j, and 0 otherwise, is made (in other
words, this assumption means G, = I).

From Eq. (6), it follows that if G, = I then P = A.
Thus, the above specifications imply the interpretation
that D = A = P. That is, d,s are both projections and
components of the documents along the terms vectors.
Under these conditions,

S
<
I

n
2l a,qt; "t

(L=

Zl a,.q; = E d/rq/v (10)
/ J=1

1=

where ¢ = (q,, q2, - - -, q,) is the query vector and g;s
are the components of g along the term vectors. The
above form (dot product) of similarity function is, of
course, well known in IR literature. This approach
results in a model that is simple to apply and yet very use-
ful. The problem here is that we no longer remain within
the framework of this special case if we want to deal with
term-term correlations.* However, document-document
correlations can be obtained by

G,=P'A<£D'DD

(2) An Alternative Interpretation. In the standard
vector model, G, is assumed to be an identity matrix
which then leads us to the interpretation that D = P.
But, we can obtain the result equivalent (numerically) to
Eq. (10) by a different interpretation of D. We achieve
this by noticing that P is, in fact, a function of G, and A.

To see this, let us represent the document-query simi-
larity D, - q, forr = 1,2, . . . n, asavector R="1D, " q,
D, q,...D,*q), which can be written as

_au sesen all
au teee ~ah.

weare

.am tTes ann

Lyt tyly. . 'tr"tr:_ qn
Ry =A'Gq’, (D

where R, and q’ denote the transpose of matrices R, and
q, respectively. Since G, is a symmetric matrix and
P = G,A, Eq. (11) is equivalent to

R, = q(G,A) = gP. (12)

)
If we assume that the term occurrence frequency d;, rep-
resents the projection of the document veetor D, onto the
term7; (i.e., D = P), then Eq. (12) completely specifies

*|f the basis set {¢,, ¢, . . . t,} is a proper subset of the set of all
term vectors, we may find the terms not in the basis to be correlated
with each other as well as with the terms in the basis set.
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the ranking of the documents with respect to the query ¢
as follows:

(R,), = L q,®)ir = Lad, (=12 . n).
1= 1=
(13)

Clearly, Eq. (13) is equivalent to the ranking given by Eq.
(10). The important point is that this is also an interpre-
tation which can be used to explain why the dot product
of vectors ¢ and D, provide a measure of similarity. The
columns of D are, however, not document representa-
tions. Furthermore, term correlations are implicitly
taken into account and they need not be known or as-
sumed explicitly. The g;s are still interpreted as the com-
ponents.

A disadvantage of this interpretation is that even if
term-term correlations can be somehow obtained, the
computation for document ranking will still be given by
Eq. (13). Since empirical investigations show that we can
do better than using the dot product, we believe that this
interpretation although interesting will not lead to the de-
velopment of better retrieval strategies.

(3) The Dual of the Standard Vector Model. In Sec-
tion SA(1), we discussed the most popular use of the vec-
tor space model in IR. We can instead interchange the
role of documents and terms to obtain a new-iqterpreta-
tion. Now suppose that D is interpreted a@the com-
e

ponents of terms along document vectors. n,

tict; = T b,,‘b,jD,'D,. (14)

rs=1

Furthermore, let G, be assumed to be an identity matrix.
Under these conditions, Eq. (14) becomes

n
tit El b,,‘b,j
r=

= E d,',dj,. (15)

r=1
For this special case, P = B = D implying that
G, = PP’". (16)

Equation (15) is interesting in that it is akin to well
known term-term co-occurrence computations. We see
that computation of term correlations in this way is valid
only if D" is interpreted to mean B.

From Egs. (6) and (9) it follows that A = B~'. Thus,
after inverting B to obtain A, document-query correla-
tions can be computed using A, and G, as defined in Egs.
(15) or (16). It is important to note that in the standard
vector model © = A, but here D = B’. We have to make
one choice or the other but not both. In practice one finds

the use of both Egs. (10) and (13) at the same time, im-
plving that B~' = A = B’. The developments here show
otherwise. In fact, to have A = B’ we must assume both
G,=1land G, = L. This special case is rather uninterest-
ing, since we can neither talk about term-term correla-
tions nor document-document correlations.

B. Use of Additional Information

From the discussions of Section SA we realize that.
given D, a decision has to be made as to what meaning we
want to attach to it. Specifically. it seems that we have the
option of interpreting D as A, B', or P.

It is also clear that, if we do not want to make any as-
sumptions, we require additional information. Formally,
to completely specify the objects and relationships, we
must know either

(a) one of the correlation matrices (G, or G,) and one
of A, B, or P,
or

(b) the projection matrix P and one of A or B.

In other words, if we assume D is known and it can be
interpreted as A, for example, we still do not have any
information about the relative orientation of the term
vectors or the dimensionality of the vector space. Thus, a
critical question to be answered is with what concept
from the physical problem do we want orthogonality or
the degree of nonorthogonality (i.e., correlation) to be
associated. Clearly, the choice we make at this level will
directly influence the meaning that can be attached to
document-query correlations, document-document cor-
relations, and so on. When thought of in this framework,
what we are looking for is a hypothesis that helps us de-
termine the extent to which two terms are similar. Fur-
thermore, it is quite likely that this information must be
determined from outside, not implied in the term fre-
quency data which we referred to as D.

Some earlier works in IR literature offer clues for how
this might be done. Pseudo-classification [7] is a tech-
nique which has been the subject of several papers. The
idea here is to obtain a classification of terms on the basis
of relevance information obtained from the user. One of
the papers in pseudo-classification [8] actually obtains a
measure of relationship (correlation) between terms,
rather than a classification of terms. Once we have a way
to specify term-term correlations, it is then a simple mat-
ter to complete the picture vis-a-vis the vector space
model.

Example 3. Considera hypothetical collection which
consists of two documents D, and D, each of which is
described using 3 terms ¢y, £2, and ¢;. That is, let

2 3
D=|3 7
S 1

Using the vector notation, we have
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D, = 2t, + 3t; + St3,
and

D, =3t + 7t; + t;.
Clearly, elements of D are interpreted as the components
of D,s along t;s. Furthermore, suppose some technique

such as pseudo-classification is used and the following
term-term correlation matrix is obtained:

1 0.5 0
G, =|0.5 1 —-0.3
0 =03 1

Then, for a query ¢, = (0, 0, 2)

D, q, = (2t, + 3t; + 5t3)* 2t3
=4z, t; + 6¢y-t; + 10t3-¢t;
= 40 — 6%0.3 + 10=1
= 8.2

For another query g, = (2, 0, 0), the correlation is given
by

Dy q;=4t,-t, + 6t5-t, + 10153-¢,
= 4x1 + 6%0.5 + 10x0
=7

Note that D, * g, would have a higher value if the assump-
tion that £, - t; = 0 had been made. This is a direct result
of the fact that ¢, ¢; is negative. The opposite effect is
observed for D, - q,, since ¢, ¢, is positive.

It can be verified that G, is nonsingular, indicating
that all three terms are needed to span the subspace of
interest. Just knowing D, and D, is not enough to have a
basis consisting of documents alone (not enough of
them). Furthermore, since G, is nonsingular, there is no
redundancy in the representation of document vectors
D,, D, (i.e., their expansions in terms of #,, ¢, and ¢; are
unique). a '

An interesting alternative to the above is to.adopt some
scheme to obtain document-document correlations exter-
nally. For example, citation information that indicates
the pattern in which documents refer to each other can be
used to specify what we mean by correlation between two
documents.

With either of these approaches, there would still be a
need to expend the effort on the problem of determining
‘he rank of the correlation matrix in order to identify a set

of basis vectors. This step is required if the correlation
matrix is singular (that is, its determinant equals zero).
In that case, the rank of the matrix can be determined by
identifying the largest principal submatrix whose deter-
minant is nonzero. It is worth noting, however, that the
above approaches really ask the question “How can the
correlation between terms (or documents) be measured?”’
and the question of dimensionality is deferred. It is also
possible to propose some other hypothesis which can di-
rectly resolve the question of dimensionality. The hypoth-
esis would have to be more realistic than saying that the
dimension is equal to the number of distinct terms. This
we believe will help get around the problem of having to
determine the rank of the correlation matrix. We have, in
fact, developed a scheme taking this latter approach [9].
It would take too long to provide the details of the scheme
here. Instead, we present a few highlights. It is assumed
that two concepts that never jointly appear in any docu-
ment are orthogonal. This means that atomic concepts,
which are formed by conjunction of original terms such
that each is negated or unnegated, are always pairwise
orothogonal. Each original term is, then, expressed as a
linear combination of vectors associated with certain
atomic concepts. The coefficients used in the expansion
will depend on the properties of documents which charac-
terize the atomic concepts involved. The term-term corre-
lations are then obtained by the scalar product of the var-
ious term vectors. The remaining steps are a matter of
working with Egs. (3) and (6) developed earlier.

Although this assumption would suggest that the
number of dimensions is potentially exponential in the
number of terms, it is necessary to be concerned only with
the atomic concepts actually present in the document col-
lection. Consequently, the number of distinct atomic
concepts that appear in the collection is bounded by the
number of documents. Some initial results using these
ideas have been reported in [9].

Regardless of the specific approach used for this step,
the vector space model prescribes a method for how cor-
relations should be used when they are available. For ex-
ample, if term-term correlations are known, then Eq. (4)
shows exactly how that information should be incorpo-
rated for retrieval purposes. Earlier work on vector space
model, surprisingly, has given no consideration to this
apparently natural scheme. Examples of proposals that
have appeared for this step are to construct clusters of
terms (thesaurus) and then to incorporate this informa-
tion for retrieval by substituting terms in documents and
queries by term clusters (concepts) {10,11] or to expand
the query with terms that belong to the same cluster as
those in query [12].

C. A Case for Negative Components or Correlations

Before leaving this section, it is in order to reconsider
the suggestion in the current use of the vector model, that
the vector elements should be positive.

In the framework presented in this article, there is no
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reason to prescribe that all the matrix elements of A, B,
P, G,, or G, are necessarily positive numbers. In fact.
both negative and positive vector elements are appropri-
ate and necessary as can be seen from the following exam-
ple.

Example 4. In the two-dimensional vector space
shown in Figure 3, the document vectors, D, and D, are
expressed as a linear combination of the basis term vec-
tors, ¢, and ¢:

D, = ayt, + ayty,
Dz = anpt + ants.

It is easily seen from Figure 3 that if D, and D, are seen
as the basis vectors, then the compc;;xff_ti_clf/tt along the

basis vectors are positive; so are the components of ¢,

along the two documents. However, when the situation is
turned around, and ¢,, t, are considered to be the basis
vectors, the component.a,, of D, along ¢, and the compo-
nent a,; of D, along ¢, are negative numbers. Although in
this example all the projections are positive, it is also pos-
sible to have negative prgﬁ&fg}ls and/or correlations.
Clearly, it is easy to imagine two index terms to be “‘oppo-
site” in meaning and negative correlations would be a
way to model that situation. In fact, the paper on pseudo-
classification by one of the authors [8] discusses a scheme
to determine both positive and negative relationship be-
tween terms. Based on the arguments presented here, the
need to introduce negative components or correlations in
the vector space model is quite evident.

6. Issues Relating to Linearly Dependent Set
of Vectors

The standard vector space model assumes that terms
are not correlated. More precisely, this mean that terms
are pairwise orthogonal. Given some n terms, if they are
pairwise orthogonal then it follows that the set of n vec-

FIG. 3. Negative components in a two-dimensional vector space.

tors in question are also linearly independent. That is. '
the idea of pairwise orthogonality and the set being lin-
early independent coincide. But. if we have a set of n term
vectors where certain pairs of vectors are correlated (not
orthogonal), then it is not immediately clear whether the
set is linearly independent. The two notions are, cer-
tainly, closely related since we need to know the exact
pattern of correlations before we can determine the size
of a maximal subset of vectors that are linearly indepen-
dent. In other words, if {¢,, ¢, . . . t,} represents the
generating set for the subspace of interest and if the set is
linearly dependent, then the representation of document
vectors in terms of this set will not be unique. However, if
we identify a (maximal) subset of vectors that are linearly
independent, then the other vectors in the space have a
unique representation in terms of this basis.

Thus, linear independence does not mean terms (or
documents) are uncorrelated. Rather, linear indepen-
dence only implies that any redundancy in the usage of
terms has been removed and the representation in terms
of the resulting set of vectors is compact (and unique). In
the earlier literature, this separation of nonorthogonality
and linear independence is not at all clear due to the fact
that the assumption that terms are pairwise orthogonal
was made to start with.

It is worth reiterating that the main objective of reduc-
tion of the correlation matrix is to determine the dimen-
sionality of the space. Thus, as indicated in Section 5B, if
some reasonable hypothesis can be made regarding di-
mensionality, the computational burden associated with
the reduction process can be minimized.

The notions connected with-reduction also share a
close connection to earlier work in IR under the heading
of discrimination value model [4,13,14]. After all, when
we identify a linearly independent set from a linearly de-
pendent set of term vectors, we are getting rid of unneces-
sary or superfluous terms and are thereby obtaining a
space of reduced dimensions.

7. Conclusions

The way in which the vector space model has been in-
troduced and used in the literature has led to a situation
where many important concepts are ignored or poorly un-
derstood. In this work, we critically review the vector
space model for IR by using notation that more clearly
brings out problems and challenges associated with the
use of the vector space model. In particular, the following
assertions capsulate the main results of this investigation:

(i) Linear dependence of a set of (term) vectors,
orthogonality or nonorthogonality of the various
pairs of (term) vectors, and the dimensionality of
the vector space are closely connected concepts.

(ii) Given a set of term vectors, every pair of vectors in
the set being orthogonal implies that the set is lin-

early independent; the converse need not be true. —

(iii) A vector space spanned by a linearly depender:
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set of (term) vectors can always be spanned by a
linearly independent subset of these vectors: thus.
representation of a vector using a linearly depen-
dent set of (term) vectors may consist of terms
that can be eliminated without any loss of infor-
mation.

(iv) Given the term-document matrix. consisting of
frequencies of occurrence of terms in documents.
theyv need not always be interpreted (as has been
commonly done) as the components of document
vectors along the terms: a number of other inter-
pretations are possible.

(v) Given the term-document matrix and the inter-
pretation of them as components of document
vectors along terms, the model is not complete.
One way to make this complete is to have a way to
determine term-term similarities.

(vi) Without additional assumptions. computation of
a quantity such as term-term similarities must be
done. from outside. independently of term-docu-
ment matrix. In particular. interpretation of the
elements of the term-document matrix as both
the component of documents along term vectors
as well as the components of terms along docu-
ment vectors (which has often been done) is in-
consistent. That is. the choice of one makes the
choice of the other incorrect.

We believe that this work will lead to the harnessing of
the real power inherent in the vector space model as a
formal framework for developing information retrieval
systems.
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