CMPS 566: Association Rule Mining

Vijay Raghavan March 31, 2020

Agenda

- Association Mining
- Definitions and Example
- Apriori Algorithm
- Closed and Maximal Frequent Patterns
- Related Methods
- Correlation Analysis and Interestingness Measures

Association Mining

- Popular Data Mining Method.
- Attempts to find correlations between items and form 'interesting' rules.
- Market Basket Analysis
- Two step process
 - Find frequent itemsets
 - Form rules / patterns from frequent itemsets

Definitions

The set of items *I* = { *i*₁, *i*₂... *i*_m } represents the set of all items in a transaction database.

- An itemset *X* is a subset of *I*.
- An itemset *X* is called k-itemset if its cardinality is k.

Definitions

• Support = probability that a transaction contains itemset X

 An itemset X is called a frequent itemset if support(X) > threshold (minsup).

Definitions

• Confidence is conditional probability that a transaction having X also contains Y

• An association rule is a pattern that states when X occurs, Y occurs satisfying a given confidence threshold (**minconf**).

Example: Frequent Itemset

Transaction data

Assume: – minsup = 30%

- t1: Beef, Chicken, Milk
- t2: Beef, Cheese
- t3: Cheese, Boots
- t4: Beef, Chicken, Cheese
- t5: Beef, Chicken, Clothes, Cheese, Milk
- t6: Chicken, Clothes, Milk
- t7: Chicken, Milk, Clothes
- Examples of frequent itemsets:
 -{Beef}
 [sup =
 4/7]
 - -{Chicken, Clothes, Milk} [sup = 3/7]

Example: Rules

- Transaction data
- Assume:
 - minsup = 30%
 - minconf = 80%

- t1: Beef, Chicken, Milk
- t2: Beef, Cheese
- t3: Cheese, Boots
- t4: Beef, Chicken, Cheese
- t5: Beef, Chicken, Clothes, Cheese, Milk
- t6: Chicken, Clothes, Milk
- t7: Chicken, Milk, Clothes

Association rules from the itemset:
 − Clothes → Milk, Chicken, [sup = 3/7, conf = 3/3]

- Clothes, Chicken \rightarrow Milk, [sup = 3/7, conf = 3/3]

Apriori

- First association mining algorithm
 - Iterative in nature
 - Level-wise search
 - Based on Apriori Property
 - All nonempty subsets of a frequent itemset must also be frequent. AKA, anti-monotonicity property
 - Note, in practice
 - If support(milk) < minsup,</p>

Then *support(milk* ∪ *Other)* < minsup

Apriori – Find Frequent Itemsets

- Basic Approach
 - Set K = 1
 - Create CandidateItems \rightarrow All K-itemsets.
 - Do
 - Find Support for all K-level itemset
 - Store all K-level items that are frequent in Bag
 - Create new CandidateItems
 - Generate K+1 itemset from frequent K-itemsets
 - Use Apriori Principle to Prune invalid K+1 itemsets
 - K = K + 1
 - Until CandidateItems is empty

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate generation.

Input: Database, D, of transactions; minimum support threshold, min_sup.

Output: L, frequent itemsets in D.

Method:

(1) $L_1 = \text{find}_{\text{frequent}_1-\text{itemsets}(D)};$ (2)for $(k = 2; L_{k-1} \neq \phi; k++)$ { (3) $C_k = apriori_gen(L_{k-1}, min_sup);$ (4)for each transaction $t \in D \{ // \text{ scan } D \text{ for counts} \}$ $C_t = \text{subset}(C_k, t)$; // get the subsets of t that are candidates (5)(6)for each candidate $c \in C_t$ (7)c.count++; (8)(9) $L_k = \{c \in C_k | c.count \ge min_sup\}$ (10)(11) return $L = \bigcup_k L_k$;

procedure apriori_gen(L_{k-1} : frequent (k - 1)-itemsets; min_sup: minimum support threshold)


```
procedure has_infrequent_subset(c: candidate k-itemset; L_{k-1}: frequent (k - 1)-itemsets);
```

// use prior knowledge

- (1) for each (k 1)-subset *s* of *c*
- (2) if $s \notin L_{k-1}$ then
- (3) return TRUE;
- (4) return FALSE;

Figure 6.5 The Apriori algorithm for discovering frequent itemsets for mining Boolean Solar association rules.

232 Chapter 6 Mining Association Rules in Large Databases

TID	List of item_IDs
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11, 13
T600	12, 13
T700	11, 13
T800	11, 12, 13, 15
T900	11, 12, 13

Figure 6.2 Transactional data for an *AllElectronics* branch.

10.14 5.1

- 1. The join step: To find L_k , a set of candidate k-itemsets is generated by joining L_{k-1} with itself. This set of candidates is denoted C_k . Let l_1 and l_2 be itemsets in L_{k-1} . The notation $l_i[j]$ refers to the *j*th item in l_i (e.g., $l_1[k-2]$ refers to the second to the last item in l_1). By convention, Apriori assumes that items within a transaction or itemset are sorted in lexicographic order. The join, $L_{k-1} \bowtie L_{k-1}$, is performed, where members of L_{k-1} are joinable if their first (k-2) items are in common. That is, members l_1 and l_2 of L_{k-1} are joined if $(l_1[1] = l_2[1]) \land (l_1[2] = l_2[2]) \land \ldots \land (l_1[k-2] = l_2[k-2]) \land (l_1[k-1] < l_2[k-1])$. The condition $l_1[k-1] < l_2[k-1]$ simply ensures that no duplicates are generated. The resulting itemset formed by joining l_1 and l_2 is $l_1[1]l_1[2] \ldots l_1[k-1]l_2$ [k-1].
- 2. The prune step: C_k is a superset of L_k , that is, its members may or may not be frequent, but all of the frequent k-itemsets are included in C_k . A scan of the database to determine the count of each candidate in C_k would result in the determination of L_k (i.e., all candidates having a count no less than the minimum support count are frequent by definition, and therefore belong to L_k). C_k , however, can be huge, and so this could involve heavy computation. To reduce the size of C_k , the Apriori property is used as follows. Any (k - 1)-itemset that is not frequent cannot be a subset of a frequent k-itemset. Hence, if any (k - 1)-subset of a candidate k-itemset is not in L_{k-1} , then the candidate cannot be frequent either and so can be removed from C_k . This subset testing can be done quickly by maintaining a hash tree of all frequent itemsets.

$ \begin{array}{c} C_{1} \\ C_{1} \\ C_{2} \\ C_{2} \\ C_{3} \\ C_{1} $
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
$\underbrace{ \begin{array}{c} \text{candidate} \\ \text{candidate} \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\underbrace{ \begin{bmatrix} 14\\ 15 \end{bmatrix} 2 \\ \hline \\ 15 \end{bmatrix} 2 \\ \underbrace{ \begin{bmatrix} 14\\ 15 \end{bmatrix} 2 \\ \hline \\ 15 \end{bmatrix} 2 \\ \underbrace{ \begin{bmatrix} 14\\ 2\\ 15 \end{bmatrix} 2 \\ \hline \\ 15 \end{bmatrix} 2 \\ \underbrace{ \begin{bmatrix} 14\\ 2\\ 15 \end{bmatrix} 2 \\ \hline \\ 15 \end{bmatrix} 2 \\ \underbrace{ \begin{bmatrix} 12\\ 12\\ 12\\ 12\\ 12\\ 13 \end{bmatrix} 4 \\ \underbrace{ \begin{bmatrix} 11\\ 12\\ 12\\ 13\\ 14\\ 11\\ 15\\ 12\\ 15 \end{bmatrix} 2 \\ \underbrace{ \begin{bmatrix} 12\\ 12\\ 12\\ 13\\ 14\\ 11\\ 11\\ 15 \end{bmatrix} 2 \\ \underbrace{ \begin{bmatrix} 12\\ 12\\ 12\\ 13\\ 14\\ 11\\ 11\\ 15 \end{bmatrix} 2 \\ \underbrace{ \begin{bmatrix} 12\\ 12\\ 12\\ 12\\ 12\\ 13\\ 14 \end{bmatrix} 4 \\ \underbrace{ \begin{bmatrix} 12\\ 12\\ 12\\ 12\\ 12\\ 13\\ 14 \end{bmatrix} 4 \\ \underbrace{ \begin{bmatrix} 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 13\\ 14 \end{bmatrix} 4 \\ \underbrace{ \begin{bmatrix} 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\underbrace{\begin{array}{c} C_{2} \\ C_{1} \\ C_{1}$
$\underbrace{ \begin{array}{c} C_{2} \\ Generate C_{2} \\ candidates from L_{1} \\ \hline \\ 11, 12 \\ \{11, 13\} \\ \{11, 14\} \\ \{11, 15\} \\ \{12, 13\} \\ \{12, 14\} \\ \{12, 15\} \\ \{12, 15\} \\ \{13, 14\} \\ \hline \\ \end{array}} \xrightarrow{ \begin{array}{c} C_{2} \\ C_{2} \\ \hline \\ Scan D for \\ count \\ \hline \\ 1temset \\ Sup. count \\ \hline \\ Support count with \\ minimum support \\ minimum support \\ \{11, 12\} \\ support count with \\ \{11, 12\} \\ \{11, 12\} \\ \{11, 12\} \\ \{11, 13\} \\ \{11, 14\} \\ \{11, 15\} \\ \{12, 13\} \\ \{12, 14\} \\ \{12, 15\} \\ \{12, 15\} \\ 2 \\ \hline \\ \end{array}} \xrightarrow{ \begin{array}{c} C_{2} \\ C_{2} \\ Scan D for \\ \{11, 12\} \\ \{11, 13\} \\ \{11, 13\} \\ \{11, 15\} \\ \{12, 13\} \\ \{12, 14\} \\ \{12, 15\} \\ \{12, 15\} \\ 2 \\ \hline \end{array}} \xrightarrow{ \begin{array}{c} C_{2} \\ Compare candidate \\ support count with \\ minimum support \\ (11, 13) \\ \{11, 15\} \\ \{12, 13\} \\ \{12, 14\} \\ \{12, 14\} \\ \{12, 15\} \\ 2 \\ \hline \end{array}} \xrightarrow{ \begin{array}{c} C_{2} \\ Scan D for \\ \{11, 12\} \\ \{11, 13\} \\ \{11, 13\} \\ \{12, 14\} \\ \{12, 14\} \\ \{12, 15\} \\ 2 \\ \hline \end{array}} \xrightarrow{ \begin{array}{c} L_{2} \\ Scan D for \\ (11, 12) \\ (11, 13) \\ \{11, 13\} \\ \{12, 14\} \\ \{12, 14\} \\ \{12, 14\} \\ 2 \\ \{12, 15\} \\ 2 \\ \hline \end{array}} \xrightarrow{ \begin{array}{c} L_{2} \\ Scan D for \\ (11, 12) \\ (11, 13) \\ (11, 15) \\ (12, 13) \\ (12, 15) \\ (12, 15) \\ 2 \\ \hline \end{array}} \xrightarrow{ \begin{array}{c} L_{2} \\ Scan D for \\ (11, 12) \\ (11, 13) \\ (11, 15) \\ (12, 13) \\ (12, 13) \\ (12, 15) \\ (12$
$ \underbrace{ \begin{array}{c} C_{2} \\ Generate C_{2} \\ candidates from L_{1} \\ \{11, 12\} \\ \{11, 13\} \\ \{11, 14\} \\ \{11, 15\} \\ \{12, 13\} \\ \{12, 14\} \\ \{12, 15\} \\ \{12, 15\} \\ \{13, 14\} \\ \{13, 1$
$ \underbrace{ \begin{array}{c} C_{2} \\ C_{$
Generate C2 Itemset Sup. count Compare candidate Itemset Sup. count candidates from L_1 {11, 12} count of each {11, 12} 4 support count with {11, 12} 4 {11, 13} candidate {11, 13} 4 minimum support {11, 13} 4 {11, 14}
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c} \{11, 14\} \\ \{11, 15\} \\ \{12, 13\} \\ \{12, 14\} \\ \{12, 15\} \\ \{12, 15\} \\ \{12, 15\} \\ \{13, 14\} \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\{12, 15\}$ $\{12, 15\}$ 2 $\{13, 14\}$ $[13, 14]$ 0
[13, 14] [13, 14] 0
C_3 C_3 L_3
Generate C3 Itemset Scan D for Itemset Sup. count Compare candidate Itemset Sup. count
candidates from [11, 12, 13] count of each [11, 12, 13] 2 support count with [11, 12, 13] 2
L ₂ candidate minimum support
[11, 12, 15] [11, 12, 15] 2 count [11, 12, 15] 2

- 1. Join: $C_3 = L_2 \bowtie L_2 = \{\{11,12\}, \{\{11,13\}, \{\{11,15\}, \{12,13\}, \{12,14\}, \{12,15\}\} \bowtie \{\{11,12\}, \{\{11,13\}, \{\{11,15\}, \{12,13\}, \{12,14\}, \{12,15\}\} = \{\{11,12,13\}, \{11,12,15\}, \{11,13,15\}, \{12,13,14\}, \{12,13,15\}, \{12,14,15\}\}.$
- 2. Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be frequent. Do any of the candidates have a subset that is not frequent?
 - The 2-item subsets of {11,12,13} are {11,12}, {11,13}, and {12,13}. All 2-item subsets of {11,12,13} are members of *L*₂. Therefore, keep {11,12,13} in *C*₃.
 - The 2-item subsets of {11,12,15} are {11,12}, {11,15}, and {12,15}. All 2-item subsets of {11,12,15} are members of *L*₂. Therefore, keep {11,12,15} in *C*₃.
 - The 2-item subsets of $\{11,13,15\}$ are $\{11,13\}$, $\{11,15\}$, and $\{13,15\}$. $\{13,15\}$ is not a member of L_2 , and so it is not frequent. Therefore, remove $\{11,13,15\}$ from C_3 .
 - The 2-item subsets of $\{12,13,14\}$ are $\{12,13\}$, $\{12,14\}$, and $\{13,14\}$. $\{13,14\}$ is not a member of L_2 , and so it is not frequent. Therefore, remove $\{12,13,14\}$ from C_3 .
 - The 2-item subsets of $\{12,13,15\}$ are $\{12,13\}$, $\{12,15\}$, and $\{13,15\}$. $\{13,15\}$ is not a member of L_2 , and so it is not frequent. Therefore, remove $\{12,13,15\}$ from C_3 .
 - The 2-item subsets of $\{12,14,15\}$ are $\{12,14\}$, $\{12,15\}$, and $\{14,15\}$. $\{14,15\}$ is not a member of L_2 , and so it is not frequent. Therefore, remove $\{12,14,15\}$ from C_3 .

3. Therefore, $C_3 = \{\{11, 12, 13\}, \{11, 12, 15\}\}$ after pruning.

Figure 5.4 Generation of candidate 3-itemsets, C_3 , from L_2 using the Apriori property. 5.3

Closed and Maximal Frequent Patterns

Based on various extensions to association mining: Association mining can be extended to correlation analysis, where the absence or presence of correlated items can be identified. It can also be extended to mining maxpatterns (i.e., maximal frequent patterns) and frequent closed itemsets. A maxpattern is a frequent pattern, p, such that any proper superpattern⁵ of p is not frequent. A frequent closed itemset is a frequent closed itemset where an itemset c is closed if there exists no proper superset of c, c', such that every transaction containing c also contains c'. Maxpatterns and frequent closed itemsets generated in be used to substantially reduce the number of frequent itemsets generated in mining.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent. The Apriori property is based on the following observation. By definition, if an itemset I does not satisfy the minimum support threshold, min_sup , then I is not frequent, that is, $P(I) < min_sup$. If an item A is added to the itemset I, then the resulting itemset (i.e., $I \cup A$) cannot occur more frequently than I. Therefore, $I \cup A$ is not frequent either, that is, $P(I \cup A) < min_sup$.

I - is an itemset anti-monotonie

Apriori – Find Rules

- For each frequent itemset Z
 - Generate all nonempty subsets of ${\cal Z}$
 - For each nonempty subset *L* of *Z*
 - Rule is $L \rightarrow (Z L)$
 - Calculate confidence.
 - If confidence > minconf, accept rule.

Example 6.2 Let's try an example based on the transactional data for *AllElectronics* shown in Figure 6.2. Suppose the data contain the frequent itemset *l* = {11,12,15}. What are the association rules that can be generated from *l*? The nonempty subsets of *l* are {11,12}, {11,15}, {12,15}, {11}, {12}, and {15}. The resulting association rules are as shown below, each listed with its confidence:

$I1 \land I2 \Rightarrow I5,$	confidence = 2/4 = 50%
$I1 \land I5 \Rightarrow I2$,	confidence = 2/2 = 100%
$12 \land 15 \Rightarrow 11$,	confidence = 2/2 = 100%
$I1 \Rightarrow I2 \land I5$,	confidence = 2/6 = 33%
$12 \Rightarrow 11 \land 15$,	confidence = 2/7 = 29%
$I5 \Rightarrow I1 \land I2$,	confidence = 2/2 = 100%

5.4

If the minimum confidence threshold is, say, 70%, then only the second, third, and last rules above are output, since these are the only ones generated that are strong.

Apriori

- Time-consuming
 - Can generate large number of candidates
 - Repeatedly scans the database

- A number of algorithms exist that speed up process
 - Normally focus on the Frequent Itemset generation step.

Related Frequent Patterns Mining Methods

	H_2				٠			
Create hash table H_2	bucket address	0	1	2	3	4	5	6
using hash function	bucket count	2	2	4	2	2	4	4
$h(x, y) = ((order \ of \ x) \times 10)$	bucket contents	{I1, I4}	{I1, I5}	{12, 13}	{12, 14}	{12, 15}	{11, 12}	{11,13}
+ (order of y)) mod 7		{13, 15}	{11, 15}	{12, 13}	{12, 14}	{12, 15}	{11, 12}	{11,13}
				{12, 13}			{11, 12}	{11, 13}
				{12, 13}			{11,12}	{11, 13}
		U	I	1				

Figure 6:6 Hash table, H_2 , for candidate 2-itemsets: This hash table was generated by scanning the transactions of Figure 6.2 while determining L_1 from C_1 . If the minimum support count is, say, 3, then the itemsets in buckets 0, 1, 3, and 4 cannot be frequent and so they should not be included in C_2 .

Correlation Analysis and Pattern Interestingness Measures

Rules

- Support-confidence framework
 - Generates a large number of rules (normally)
 - Not all rules interesting
 - Birds \rightarrow Fly

• What is interesting?

Interesting - Lift

- Have rule $\mathbf{A} \rightarrow \mathbf{B}$
- Lift(A, B)

- Result
 - Lift(A,B) > 1 : Positive Correlation (keep)
 - Lift(A,B) = 1 : Independent
 - Lift(A,B) < 1 : Negative Correlation</p>

Example 6.7 To help filter out misleading "strong" associations of the form $A \Rightarrow B$, we need to study how the two itemsets, A and B, are correlated. Let <u>game</u> refer to the transactions of Example 6.6 that do not contain computer games, and <u>video</u> refer to those that do not contain videos. The transactions can be summarized in a contingency table. A contingency table for the data of Example 6.6 is shown in Table 6.4. From the table, we can see that the probability of purchasing a computer game is $P(\{game\}) = 0.60$, the probability of purchasing a video is $P(\{video\}) = 0.75$, and the probability of purchasing both is $P(\{game, video\}) = 0.40$. By Equation (6.22), $P(\{game, video\})/(P(\{game\}) \times P(\{video\})) = 0.40/(0.60 \times 0.75) = 0.89$. Since this value is less than 1, there is a negative correlation between the occurrence of *[game]* and *[video]*. The numerator is the likelihood would have been if the two

Table 6.4	A 2 \times 2 contingency table summarizing the transactions with respect to computer
	game and video purchases.

	game	game	Σ τοιν	
video	4,000	3,500	7,500	
video	2,000	500	2,500	
Σ_{col}	6,000	4,000	10,000	

PCA,B) PCAV·PCB) $\frac{P(B)}{P(A,B)} = \frac{P(B/A) \cdot P(A)}{P(A)}$ $\frac{P(A,B)}{P(A)} = \frac{P(B/A)}{P(B/A)}$ $\frac{P(A,B)}{P(A)} = \frac{P(B/A)}{P(B)}$ $\frac{P(A,B)}{P(B)} = \frac{P(B/A)}{P(B)}$ Light role role PCA7.PCB7 P(BIA) P(B) A⇒B B⇒A PCA)

