Ch. 8 – Classification: Basic Concepts

Prediction Problems: Classification vs. Numeric Prediction

- Classification
 - predicts categorical class labels (discrete or nominal)
 - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Numeric Prediction
 - models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit/loan approval: if a customer is good or bad credit risk
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set (otherwise overfitting)
- If the accuracy is acceptable, use the model to classify new data Note: If *the test set* is used to select models, it is called validation (test) set

Figure 7.1 The data classification process: (a) *Learning:* Training data are analyzed by a classification algorithm. Here, the class label attribute is *credit_rating*, and the learned model or classifier is represented in the form of classification rules. (b) *Classification:* Test data are used to estimate the accuracy of the classification.rules. If the accuracy is considered acceptable, the rules can be applied to the classification of new data tuples.

Decision Tree Methods

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data partition D.

Input:

Data partition, D, which is a set of training tuples and their associated class labels;

attribute_list, the set of candidate attributes;

Attribute_selection_method, a procedure to determine the splitting criterion that "best" partitions the data tuples into individual classes. This criterion consists of a splitting_attribute and, possibly, either a split point or splitting subset.

Output: A decision tree.

Method:

(3)

(11)

(13)

- (1) create a node N:
- (2) if tuples in D are all of the same class, C then
 - return N as a leaf node labeled with the class C;
- (4) if attribute_list is empty then
- (5) return N as a leaf node labeled with the majority class in D; // majority voting
- (6) apply Attribute_selection_method(D, attribute_list) to find the "best" splitting_criterion;
- (7) label node N with splitting_criterion;
- (8) if splitting_attribute is discrete-valued and

multiway splits allowed then // not restricted to binary trees

- (9) attribute_list ~ attribute_list splitting_attribute; // remove splitting_attribute
- (10) for each outcome j of splitting_criterion

// partition the tuples and grow subtrees for each partition

let D_j be the set of data tuples in D satisfying outcome j: ll a partition

12) if D_j is empty then

attach a leaf labeled with the majority class in D to node N;

- (14) else attach the node returned by Generate_decision_tree(D₁, attribute_list) to node N;
 endfor
- (15) return N;

B

Figure \$.3 Basic algorithm for inducing a decision tree from training tuples.

288 Chapter 7 Classification and Prediction

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no 🗲
2	<=30	high	no	excellent	no 🌜
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low X	yes	fair	yes
6	>40	low	yes	excellent *	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no 🗲
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes 👟
12	31 40	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

 Table 7.1
 Training data tuples from the AllElectronics customer database.

Figure 7.4 The attribute *age* has the highest information gain and therefore becomes a test attribute at the root node of the decision tree. Branches are grown for each value of *age*. The samples are shown partitioned according to each branch.

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i, estimated by |C_{i, D}|/|D|
- Expected information (entropy) needed to classify a tuple in D: $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$
- Information needed (after using A to split D^{*i*=1} into v partitions) to classify D: $\sum_{i=1}^{v} |D_i|$

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

Class P: buys_computer = "yes"				= "yes"	$I_{nf_{0}}$ (D) = $\frac{5}{1(2,3)} + \frac{4}{1(4,0)}$
Class N: buys_computer = "no"			puter	r = "no"	$IMJO_{age}(D) = \frac{1}{14}I(2,3) + \frac{1}{14}I(4,0)$
Info(D) = I	(9,5) =	$-\frac{9}{14}\log$	$g_2(\frac{9}{14})$	$-\frac{5}{14}\log_2(\frac{5}{14})$	$=0.940$ $+\frac{5}{14}I(3,2)=0.694$
ć	age	p _i	n _i	l(p _i , n _i)	$\frac{5}{-1}I(2,3)$ means "age <=30" has 5 out of
<=	30	2	3	0.971	14
31	40	4	0	0	14 samples, with 2 yes es and 5 no s.
~1	\bigcirc	ર	2	0 971	Hence

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 $Gain(age) = Info(D) - Info_{age}(D) = 0.246$ Similarly,

Gain(income) = 0.029Gain(student) = 0.151 $Gain(credit_rating) = 0.048$

14 5 \$ 596 Inform Gain (D) 9/4 100 10 = Into (D) - Into (D)]C,,D]= 9 I (1,5) - Z pilog (pi) $|C_{2},D| = 5$ - 24 9 44 - 54 9 5/14 = 0-94 $|D_1| = 5$ $|D_2| = 4$ $|D_3| = 5$ 5Inf (P) = I(2,3) = - 3/053 - 3/1935 = 0.971 Info. (D2) = 0 $I_{nfo}(D_3) = I(3,2) = 0.971$ = nfr. age (D) = j=1 [D] Info () = 54 × 0971 + 0 + 514 0.971 hongo Gain age (D) = 0-94-0-694 = 0-226

Computing Information-Gain for Continuous-Valued Attributes

Let attribute A be a continuous-valued attribute

Must determine the *best split point* for A

Sort the value A in increasing order

Typically, the midpoint between each pair of adjacent values is considered as a possible *split point*

 $(a_i+a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}

The point with the *minimum expected information requirement* for

A is selected as the split-point for A

Split:

D1 is the set of tuples in D satisfying $A \le$ split-point, and D2 is the set of tuples in D satisfying A > split-point

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

SplitInfo_A(D) =
$$-\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
 - Ex. SplitInfo_{income}(D) = $-\frac{4}{14} \times \log_2\left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2\left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2\left(\frac{4}{14}\right) = 1.557$

gain_ratio(income) = 0.029/1.557 = 0.019

• The attribute with the maximum gain ratio is selected as the splitting attribute

SplitInfoage (D) = I (5,4,5) - 1/4 (55/14 - 4/14 54/14 - 14 5/14 Gain Ratio age (D) = 0.240/1.4070 = 0-175

Gini Index (CART, IBM IntelligentMiner)

If a data set *D* contains examples from *n* classes, gini index, gini(*D*) is defined as $n = \frac{n}{2}$

$$gini(D) = 1 - \sum_{j=1}^{n} p_j^2$$

where p_j is the relative frequency of class j in D

If a data set *D* is split on A into two subsets D_1 and D_2 , the gini index gini(*D*) is defined as

$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$

Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

The attribute provides the smallest gini_{split}(D) (or the largest reduction in impurity) is chosen to split the node (*need to enumerate all the possible splitting points for each attribute*)

Comparing Attribute Selection Measures

The three measures, in general, return good results but

- Information gain:
 - biased towards multivalued attributes
- Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
- Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

Overfitting and Tree Pruning

Overfitting: An induced tree may overfit the training data

Too many branches, some may reflect anomalies due to noise or outliers

Poor accuracy for unseen samples

Two approaches to avoid overfitting

<u>Prepruning</u>: *Halt tree construction early*-do not split a node if this would result in the goodness measure falling below a threshold

Difficult to choose an appropriate threshold

<u>Postpruning</u>: *Remove branches* from a "fully grown" tree—get a sequence of progressively pruned trees

Use a set of data different from the training data to decide which is the "best pruned tree"

Naive Bayes Method

Bayes' Theorem: Basics

Total probability Theorem:

$$P(B) = \sum_{i=1}^{M} P(B|A_i) P(A_i)$$

Bayes' Theorem:

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

Let **X** be a data sample ("evidence"): class label is unknown

Let H be a hypothesis that X belongs to class C

Classification is to determine P(H|X), (i.e., *posteriori probability):* the probability that the hypothesis holds given the observed data sample X

P(H) (*prior probability*): the initial probability

E.g., X will buy computer, regardless of age, income, ...

P(X): probability that sample data is observed

P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds

E.g., Given that **X** will buy computer, the prob. that X is 31..40, medium income

Prediction Based on Bayes' Theorem

Given training data **X**, posteriori probability of a hypothesis H, P(H|**X**), follows the Bayes' theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H) / P(\mathbf{X})$$

Informally, this can be viewed as

posteriori = likelihood x prior/evidence

Predicts **X** belongs to C_i iff the probability $P(C_i | \mathbf{X})$ is the highest among all the $P(C_k | \mathbf{X})$ for all the *k* classes Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost

Bayes Classifiation Naive Bayes Method Statistical Estimate probability $\chi = (\chi_1, \chi_2, ..., \chi_n)$ Two classes - C, , C2 P(C./X) (P(C2/X))

Theorem Maire Bayes Bayes PCC,X) P(X) C,X) PLXC PCC) P(X/c). P(C) P(c/x)·P(x) (P(X/c)) P(c) PCXDD margina posteriori probability (\leq) Fideral -PCX/E, Condit densities

Naïve Bayes Classifier

• A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X} | C_{i}) = \prod_{i=1}^{n} P(x_{k} | C_{i}) = P(x_{1} | C_{i}) \times P(x_{2} | C_{i}) \times \dots \times P(x_{n} | C_{i})$$

- This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical, P(x_k|C_i) is the # of tuples in C_i having value x_k for A_k divided by |C_{i, D}| (# of tuples of C_i in D)
- If A_k is continuous-valued, $P(x_k | C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)}{2\sigma^2}}$$

and $P(x_k | C_i)$ is

$$P(\mathbf{X} \mid C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes' C2:buys_computer = 'no'

Data to be classified: X = (age <=30, Income = medium, Student = yes Credit_rating = Fair)

age	income	student	credit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

```
hiah
                                                                                 31...40
                                                                                           no
                                                                                               fair
P(C_i): P(buys computer = "yes") = 9/14 = 0.643
                                                                                 40
                                                                                     medium
                                                                                           no
                                                                                               fair
                                                                                 -40
                                                                                     low
                                                                                           yes
                                                                                               fair
            P(buys computer = "no") = 5/14 = 0.357
                                                                                 -40
                                                                                     low
                                                                                               excellent
                                                                                           ves
                                                                                31 40
                                                                                     low
                                                                                               excellent
                                                                                           ves
                                                                                 <=30
                                                                                     medium
                                                                                           no
                                                                                               fair
Compute P(X|C_i) for each class
                                                                                 <=30
                                                                                     low
                                                                                           ves
                                                                                               fair
                                                                                     medium
                                                                                           ves
                                                                                               fair
      P(age = "<=30" | buys computer = "yes") = 2/9 = 0.222
                                                                                     medium
                                                                                           ves
                                                                                               excellent
                                                                                     medium
                                                                                               excellent
                                                                                           no
      P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6
                                                                                     high
                                                                                               fair
                                                                                           ves
                                                                                 >40
                                                                                     medium
                                                                                               excellent
                                                                                           no
      P(\text{income} = \text{``medium''} | \text{buys computer} = \text{``yes''}) = 4/9 = 0.444
      P(\text{income} = \text{``medium''} | \text{buys computer} = \text{``no''}) = 2/5 = 0.4
      P(student = "yes" | buys computer = "yes) = 6/9 = 0.667
      P(student = "yes" | buys computer = "no") = 1/5 = 0.2
      P(credit rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
      P(credit rating = "fair" | buys computer = "no") = 2/5 = 0.4
X = (age <= 30, income = medium, student = yes, credit_rating = fair)
P(X|C_i) : P(X|buys\_computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044
          P(X | buys computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019
P(X|C<sub>i</sub>)*P(C<sub>i</sub>) : P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028
                            P(X|buys computer = "no") * P(buys computer = "no") =
0.007
```

Therefore, X belongs to class ("buys_computer = yes")

income studentredit rating com

fair

excellent

no

no

ves

ves

ves

no

ves

no

ves

ves

ves

yes

ves

no

no

no

<=30

=30

high

high

Avoiding the Zero-Probability Problem

Naïve Bayesian prediction requires each conditional prob. be **nonzero**. Otherwise, the predicted prob. will be zero

$$P(X | C_i) = \prod_{k=1}^{n} P(x_k | C_i)$$

Ex. Suppose a dataset has 1000 samples in class C_1 , where the distribution is: income=low (0), income= medium (990), and income = high (10)

Use Laplacian correction (or Laplacian estimator)

Adding 1 to each case Prob(income = low/C_1) = 1/1003 Prob(income = medium/C_1) = 991/1003 Prob(income = high/C_1) = 11/1003 The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayes Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc. Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.

• Dependencies among these cannot be modeled by Naïve Bayes Classifier How to deal with these dependencies? Bayesian Belief Networks (Chapter 9)

Evaluation of Classifiers

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (<i>accuracy</i>)

Precision = 90/230 = 39.13%

Recall = 90/300 = 30.00%

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets Training set (e.g., 2/3) for model construction Test set (e.g., 1/3) for accuracy estimation
- <u>Random sampling</u>: a variation of holdout Repeat holdout k times, accuracy = avg. of the accuracies obtained
- **Cross-validation** (*k*-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - **<u>*Stratified cross-validation</u>**: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M₁, M₂, ..., M_k, with the aim of creating an improved model M*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - Ensemble: combining a set of heterogeneous classifiers

Bagging: Boostrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of *d* tuples, at each iteration *i*, a training set D_i of *d* tuples is sampled with replacement from D (i.e., bootstrap)
 - A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample **X**
 - Each classifier M_i returns its class prediction
 - The bagged classifier M* counts the votes and assigns the class with the most votes to X
- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy
 - Often significantly better than a single classifier derived from D
 - For noise data: not considerably worse, more robust
 - Proved improved accuracy in prediction

Summary

- Classification is a form of data analysis that extracts models describing important data classes.
- Effective and scalable methods have been developed for decision tree induction, Naive Bayesian classification, rule-based classification, and many other classification methods.
- Evaluation metrics include: accuracy, sensitivity, specificity, precision, recall, *F* measure, and F_{β} measure.
- Stratified k-fold cross-validation is recommended for accuracy estimation. Bagging and boosting can be used to increase overall accuracy by learning and combining a series of individual models.