
Ch. 8 – Classification: Basic Concepts

2

• Classification
• predicts categorical class labels (discrete or nominal)
• classifies data (constructs a model) based on the training

set and the values (class labels) in a classifying attribute
and uses it in classifying new data

• Numeric Prediction
• models continuous-valued functions, i.e., predicts unknown

or missing values
• Typical applications
• Credit/loan approval: if a customer is good or bad credit

risk
• Medical diagnosis: if a tumor is cancerous or benign
• Fraud detection: if a transaction is fraudulent
• Web page categorization: which category it is

Prediction Problems: Classification vs. Numeric
Prediction

3

Classification—A Two-Step Process

• Model construction: describing a set of predetermined classes
• Each tuple/sample is assumed to belong to a predefined class, as

determined by the class label attribute
• The set of tuples used for model construction is training set
• The model is represented as classification rules, decision trees, or

mathematical formulae
• Model usage: for classifying future or unknown objects
• Estimate accuracy of the model
• The known label of test sample is compared with the classified result

from the model
• Accuracy rate is the percentage of test set samples that are correctly

classified by the model
• Test set is independent of training set (otherwise overfitting)

• If the accuracy is acceptable, use the model to classify new data
Note: If the test set is used to select models, it is called validation (test) set

Decision Tree Methods

12

Attribute Selection Measure:
Information Gain (ID3/C4.5)

◼ Select the attribute with the highest information gain

◼ Let pi be the probability that an arbitrary tuple in D belongs to

class Ci, estimated by |Ci, D|/|D|

◼ Expected information (entropy) needed to classify a tuple in D:

◼ Information needed (after using A to split D into v partitions) to

classify D:

◼ Information gained by branching on attribute A

)(log)(2

1

i

m

i

i ppDInfo 
=

−=

)(
||

||
)(

1

j

v

j

j

A DInfo
D

D
DInfo =

=

(D)InfoInfo(D)Gain(A) A−=

13

Attribute Selection: Information Gain

Class P: buys_computer = “yes”

Class N: buys_computer = “no”

means “age <=30” has 5 out of

14 samples, with 2 yes’es and 3 no’s.

Hence

Similarly,

age pi ni I(pi, ni)

<=30 2 3 0.971

31…40 4 0 0

>40 3 2 0.971

694.0)2,3(
14

5

)0,4(
14

4
)3,2(

14

5
)(

=+

+=

I

IIDInfoage

048.0)_(

151.0)(

029.0)(

=

=

=

ratingcreditGain

studentGain

incomeGain

246.0)()()(=−= DInfoDInfoageGain age

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

)3,2(
14

5
I

940.0)
14

5
(log

14

5
)

14

9
(log

14

9
)5,9()(22 =−−== IDInfo

16

Computing Information-Gain for
Continuous-Valued Attributes

Let attribute A be a continuous-valued attribute

Must determine the best split point for A

Sort the value A in increasing order

Typically, the midpoint between each pair of adjacent values is

considered as a possible split point

(ai+ai+1)/2 is the midpoint between the values of ai and ai+1

The point with the minimum expected information requirement for

A is selected as the split-point for A

Split:

D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the

set of tuples in D satisfying A > split-point

17

Gain Ratio for Attribute Selection (C4.5)

• Information gain measure is biased towards attributes with a
large number of values

• C4.5 (a successor of ID3) uses gain ratio to overcome the
problem (normalization to information gain)

• GainRatio(A) = Gain(A)/SplitInfo(A)
• Ex.

gain_ratio(income) = 0.029/1.557 = 0.019
• The attribute with the maximum gain ratio is selected as the

splitting attribute

)
||

||
(log

||

||
)(2

1 D

D

D

D
DSplitInfo

j
v

j

j

A −= 
=

19

Gini Index (CART, IBM IntelligentMiner)

If a data set D contains examples from n classes, gini index, gini(D)
is defined as

where pj is the relative frequency of class j in D

If a data set D is split on A into two subsets D1 and D2, the gini
index gini(D) is defined as

Reduction in Impurity:

The attribute provides the smallest ginisplit(D) (or the largest
reduction in impurity) is chosen to split the node (need to
enumerate all the possible splitting points for each attribute)


=

−=
n

j

p jDgini

1

21)(

)(
||

||
)(

||

||
)(2

2
1

1
Dgini

D

D
Dgini

D

D
DginiA

+=

)()()(DginiDginiAgini
A

−=

20

Comparing Attribute Selection Measures

The three measures, in general, return good results but

• Information gain:

• biased towards multivalued attributes

• Gain ratio:

• tends to prefer unbalanced splits in which one partition

is much smaller than the others

• Gini index:

• biased to multivalued attributes

• has difficulty when # of classes is large

• tends to favor tests that result in equal-sized partitions

and purity in both partitions

21

Overfitting and Tree Pruning

Overfitting: An induced tree may overfit the training data
Too many branches, some may reflect anomalies due to noise
or outliers
Poor accuracy for unseen samples

Two approaches to avoid overfitting
Prepruning: Halt tree construction early ̵ do not split a node if
this would result in the goodness measure falling below a
threshold

Difficult to choose an appropriate threshold

Postpruning: Remove branches from a “fully grown” tree—get a
sequence of progressively pruned trees

Use a set of data different from the training data to decide which is the “best pruned tree”

Naive Bayes Method

23

Bayes’ Theorem: Basics

Total probability Theorem:

Bayes’ Theorem:

Let X be a data sample (“evidence”): class label is unknown
Let H be a hypothesis that X belongs to class C
Classification is to determine P(H|X), (i.e., posteriori probability): the probability
that the hypothesis holds given the observed data sample X
P(H) (prior probability): the initial probability

E.g., X will buy computer, regardless of age, income, …
P(X): probability that sample data is observed
P(X|H) (likelihood): the probability of observing the sample X, given that the
hypothesis holds

E.g., Given that X will buy computer, the prob. that X is 31..40, medium
income

)()
1

|()(
i

AP
M

i
i

ABPBP 

=
=

)(/)()|(
)(

)()|()|(XX
X

XX PHPHP
P

HPHPHP ==

24

Prediction Based on Bayes’ Theorem

Given training data X, posteriori probability of a hypothesis H,

P(H|X), follows the Bayes’ theorem

Informally, this can be viewed as

posteriori = likelihood x prior/evidence

Predicts X belongs to Ci iff the probability P(Ci|X) is the highest

among all the P(Ck|X) for all the k classes

Practical difficulty: It requires initial knowledge of many

probabilities, involving significant computational cost

)(/)()|(
)(

)()|()|(XX
X

XX PHPHP
P

HPHPHP ==

27

Naïve Bayes Classifier

• A simplified assumption: attributes are conditionally
independent (i.e., no dependence relation between attributes):

• This greatly reduces the computation cost: Only counts the class
distribution

• If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having value xk

for Ak divided by |Ci, D| (# of tuples of Ci in D)
• If Ak is continuous-valued, P(xk|Ci) is usually computed based on

Gaussian distribution with a mean μ and standard deviation σ

and P(xk|Ci) is

)|(...)|()|(

1

)|()|(
21

CixPCixPCixP
n

k
CixPCiP

nk
=

=

=X

2

2

2

)(

2

1
),,(






−
−

=

x

exg

),,()|(
ii CCkxgCiP =X

28

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = ‘yes’

C2:buys_computer = ‘no’

Data to be classified:

X = (age <=30,

Income = medium,

Student = yes

Credit_rating = Fair)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

29

Naïve Bayes Classifier: An Example

P(Ci): P(buys_computer = “yes”) = 9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357

Compute P(X|Ci) for each class
P(age = “<=30” | buys_computer = “yes”) = 2/9 = 0.222
P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) =
0.007
Therefore, X belongs to class (“buys_computer = yes”)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

30

Avoiding the Zero-Probability Problem

Naïve Bayesian prediction requires each conditional prob. be non-
zero. Otherwise, the predicted prob. will be zero

Ex. Suppose a dataset has 1000 samples in class C_1, where the
distribution is: income=low (0), income= medium (990), and
income = high (10)

Use Laplacian correction (or Laplacian estimator)
Adding 1 to each case

Prob(income = low/C_1) = 1/1003
Prob(income = medium/C_1) = 991/1003
Prob(income = high/C_1) = 11/1003

The “corrected” prob. estimates are close to their “uncorrected”
counterparts


=

=
n

k
CixkPCiXP

1

)|()|(

31

Naïve Bayes Classifier: Comments

• Advantages
• Easy to implement
• Good results obtained in most of the cases

• Disadvantages
• Assumption: class conditional independence, therefore loss of

accuracy
• Practically, dependencies exist among variables

• E.g., hospitals: patients: Profile: age, family history, etc.

Symptoms: fever, cough etc., Disease: lung cancer, diabetes,
etc.

• Dependencies among these cannot be modeled by Naïve Bayes Classifier

How to deal with these dependencies? Bayesian Belief Networks
(Chapter 9)

Evaluation of Classifiers

Classifier Evaluation Metrics: Example

34

Precision = 90/230 = 39.13% Recall = 90/300 = 30.00%

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)

Evaluating Classifier Accuracy: Holdout &
Cross-Validation Methods

• Holdout method
• Given data is randomly partitioned into two independent sets

Training set (e.g., 2/3) for model construction
Test set (e.g., 1/3) for accuracy estimation

• Random sampling: a variation of holdout
Repeat holdout k times, accuracy = avg. of the accuracies obtained

• Cross-validation (k-fold, where k = 10 is most popular)
• Randomly partition the data into k mutually exclusive subsets,

each approximately equal size
• At i-th iteration, use Di as test set and others as training set
• Leave-one-out: k folds where k = # of tuples, for small sized

data
• *Stratified cross-validation*: folds are stratified so that class

dist. in each fold is approx. the same as that in the initial data

35

Ensemble Methods: Increasing the Accuracy

• Ensemble methods
• Use a combination of models to increase accuracy
• Combine a series of k learned models, M1, M2, …, Mk, with the

aim of creating an improved model M*
• Popular ensemble methods
• Bagging: averaging the prediction over a collection of

classifiers
• Boosting: weighted vote with a collection of classifiers
• Ensemble: combining a set of heterogeneous classifiers

37

Bagging: Boostrap Aggregation

• Analogy: Diagnosis based on multiple doctors’ majority vote
• Training
• Given a set D of d tuples, at each iteration i, a training set Di of d tuples is

sampled with replacement from D (i.e., bootstrap)
• A classifier model Mi is learned for each training set Di

• Classification: classify an unknown sample X
• Each classifier Mi returns its class prediction
• The bagged classifier M* counts the votes and assigns the class with the

most votes to X

• Prediction: can be applied to the prediction of continuous
values by taking the average value of each prediction for a
given test tuple

• Accuracy
• Often significantly better than a single classifier derived from D
• For noise data: not considerably worse, more robust
• Proved improved accuracy in prediction

38

Summary

• Classification is a form of data analysis that extracts models

describing important data classes.

• Effective and scalable methods have been developed for decision

tree induction, Naive Bayesian classification, rule-based

classification, and many other classification methods.

• Evaluation metrics include: accuracy, sensitivity, specificity,

precision, recall, F measure, and Fß measure.

• Stratified k-fold cross-validation is recommended for accuracy

estimation. Bagging and boosting can be used to increase overall

accuracy by learning and combining a series of individual models.

39

