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Book Information

+ Data Mining, Concepts and Techniques

Han et al.: Chapter 2, section 4 (2"d Edition,
Chapter 7, Section 2, Types of Data in Cluster
Analysis).

+ Advances In Instance-Based Learning
Algorithms
Dissertation by D. Randall Wilson, August 1997.
Chapters 4 and 5.
+ Prototype Styles of Generalization
Thesis by D. Randall Wilson, August 1994.
Chapters 3.
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Data

+ Each instance (point, record, example,
entity, sample, observation)

Composed of one or more features.

+ Feature (attribute, variable, field,
dimension, characteristic)

Composed of a data type
Data type has a range of values.
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Data Types

+ Quantitative

Interval-Scaled
e Real
e Integer

Ratio-Scaled
e Discrete
e Continuous
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Data Types

4 Qualitative
Binary
e Symmetric
e Asymmetric
Ordinal

e Discrete
e Continuous

4 Others
Vectors
Shape
Etc.
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Comparing Instances

+~ How does one compare instances?
Clustering

Classification
e Instance-Base Classifiers
e Artificial Neural Networks
e Support Vector Machines

¢+ Distance Functions (Measures)
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Distance Measures

* Properties
d(i,)) =0
d@i,) =0
d(i,)) = d(.1)
d(i,j) < d(i,k) + d(k,))
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Interval-Scaled Variables

+ Many Different Distance Measures
Euclidean
Manhattan (City Block)
MinkowskKi

* For purpose of discussion, assume all
features in data point are Interval-
Scaled.
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Euclidean

* Also called the L, norm
¢ Assumes a straight-line from two points

o d@i, j)=J(x, =% )+, =% ) +..+(x =x )
4 Where

, | are two different instances
n is the number of interval-features
X., is the value at zt" feature value for X.
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Manhattan

* Also classed the L, norm
«~ Non-Linear.

+ X, = X, [+..+ X, =X

o d(i, j)=x,— X,
+ Where

, | are two different instances
n is the number of interval-features
X., is the value at zt" feature value for X.
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MinkowskKi

4, Euclidean and Manhattan
Special Cases

"d(i’j):qxil_le‘p_l_‘xﬁ 12‘ o +‘X _Xln‘ )y
*~ Where p Is a positive integer
* Also called the L, norm fuction



B e e e e

Minkowski

+ Not all features are equal.
Some are Irrelevant
Some are should be highly influential

. . P p p
-,d(l,J):(wlxil—le W, Xip — Xip| et Wy X — X )/p
«» Where, w, is the ‘weight’ of zt" feature,

where w, >= 0.
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Example

“« X;=(1,2), X; = (3,5)

«, Euclidean: d(i, j) = /(1-3)° +(2-5)* =3.61

+ Manhattan:d(i, j)=1-3+|2-5=5

+~ Minkowski (p = 3):
d(i,j):Q1—33+2—53)%=(8+27)y:3.27



ol el wEEEE B
Other Distance Measures

¢ Camberra

«» Chebychev

4 Quadratic

+~ Mahalanobis

+ Correlation

¢ Chi-Squared

+ Kendall’'s Rank Correlation
4 And so forth.
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Problem

¢+ Feature value ranges may distort
results.

+» Example:
Feature 1: [0, 2]
Feature 2: [-2, 2]

+» Changes in feature 2, in the distance
functions, has greater impact.
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Scaling
¢ Scale each feature to a range
[0,1]
['1’ 1]

+ Possible Issue
Say feature range is [0, 2].

99% of the data >= 1.5

e Outliers have large impact on distance
e Normal values have almost none.
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Normalize

+~ Modify each feature so
Mean (m;) =0
Standard Deviation (o) = 1

. —m
"Yif:XIf !

1 2 2 2
y Oy :N\/le _mf +X2f _mf ++XNf _mf
O¢

4+ where

y;; IS the new feature value
N is the number of data points.
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/-Score

& L =

1
4 S =NQX1f — M+ Xpp =M+t Xy —me

% where
Z¢ IS the z-score

s; IS the mean absolute deviation

e More robust to outliers, compared to standard
deviation.
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Symmetric Binary

4, Assume, for now, all features are
symmetric binary.

% How to compare?

Can use Euclidean, Manhattan, or
Minkowski functions.

Symmetric binary similarity
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Symmetric Binary

Object | 1
Object i >UM
1 g q+r
0 S S+t
sum q+s r+1 o

% g, r, s andt are counts.
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Symmetric Binary

L d(i, j)="""
P

* Properties
Range is [0, 1]
O indicates perfect match
1 indicates no matches
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Asymmetric Binary

4, Assume, for now, all features are
asymmetric binary.

+» Like Symmetric Binary

Can use Euclidean, Manhattan, or
Minkowski functions.

¢+ Alternatively, can use
Asymmetric binary similarity
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Asymmetric Binary

Object | 1
Object i >UM
1 g q+r
0 S S+t
sum q+s r+1 o

% g, r, s andt are counts.
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Asymmetric Binary

r+s
q+r+s

“d(,))=

*~ Properties
Range is [0, 1]
O indicates perfect match
1 indicates no matches

Note, as (0==0) Is considered unimportant,
It Is not factored In.



B e e e e

Examples
Name | Fever | Cough | Test-1 | Test-2 | Test-3 | Test-4
Jack Y N P N N N
Mary Y N P N P N
4 Set
Yand Pto 1
NtoO

4% Symmetric
d(Jack, Mary) =(0+ 1)/ 6 =0.167
4% Asymmetric
d(Jack,Mary) =(0+1)/(2+0+1)=0.33
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Categorical

o d(, j)="-"

4, Where

P = number of variable
m = number of matches
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Student Test-1 Test-2 Test-3
(categorical) (ordinal) (ratio)

1 Code-A Excellent 445

2 Code-B Fair 22

3 Code-C Good 164
4 Code-A Excellent 1,210

< d(2,1)=(1-0)/1=1
< d(1,4)=(1-1)/1=0



B e e e e

Categorical

+» Weighting
Can add weights to

e Increase effect of m

e Increase importance of variables with more
states
e Can do this for Binary as well.

Convention
e Some of weights should be equal to 1.
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Categorical — Other measures

« Value Difference Metric
For Classification problems (not Clustering).

Estimates conditional probabilities for each feature
value for each class.

Distance is based on difference in conditional
probabillities.

Includes a weighting scheme.

4 Modified Value Difference Metric
Handles weight estimation differently.



o e s meas e
Value Difference Metric (VDM)

“« d(, j)= zz(P(x.f, ) - P(x,f,g))

f=1g=1

4+ Where

P(X;i»9) = conditional probability of the class g
occuring, given the value x; for feature f.

C Is the number of classes
n i1s the number of features
g is either 1 or 2.

«~ Note, for simplification, weights are not
Included.
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Ordinal

4 Assume all Features are Ordinal.

«~ Feature f has M; ordered states, representing
ranking 1, 2, ..., M.

4 For each instance |

For each feature f
e Replace value x; by corresponding rank r;

°r. e[l..,M;

< To calculate d(i,]

)

Use Interval-Scaled Distance Functions.
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Ordinal

4 Like Interval-Scaled

Different Ordinal features may have
different number of states.

This leads to different features having
different implicit weights.

Hence, scaling necessary.
e —1

4 Yii =
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Example

Student Test-1 Test-2 Test-3
(categorical) (ordinal) (ratio)

1 Code-A Excellent 445

2 Code-B Fair 22

3 Code-C Good 164
4 Code-A Excellent 1,210

+~ Mappings

Fair = 1, Good = 2, Excellent = 3

4« Normalized Values
Fair = 0.0, Good = 0.5, Excellent = 1.0
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Student Test-1 Test-2 Test-3
(categorical) (ordinal) (ratio)

1 Code-A Excellent 445

2 Code-B Fair 22

3 Code-C Good 164
4 Code-A Excellent 1,210

-, Euclidean: d(2,3)=+/(0-0.5) =05
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Ordinal — Other Measures

+¢ Hamming Distance
+ Absolute Difference
*~ Normalized Absolute Difference
+~ Normalized Hamming Distance
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Ratio-Scaled

¢ Can't treat directly as Interval-Scaled

The scale for Ratio-Scaled would lead to
distortion of results.

<~ Apply
a logarithmic transformation first.
* yir = 10g(X;;)

Other type of transformation.
4, Treat result as continuous Ordinal Data.
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Student Test-1 Test-2 Test-3 Test-3
(categorical) | (ordinal) (ratio) (logarithmic)
1 Code-A Excellent 445 2.68
2 Code-B Fair 22 1.34
3 Code-C Good 164 2.21
4 Code-A Excellent 1,210 3.08

+ Euclidean: d(4,3) = J(:3.08—2.21)2 =0.87
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Mixed Types

+~ The above approaches assumed that all
features are the same type!

+ This Is rarely the case.

4+, Need a distance function that handles
all types.
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Mixed Distance

ZIO‘ﬁijfdijf
o d(i))="",
>y

f=1

4, Where

oy, for feature fis
0
o If either x;; or x;; Is missing
e (Xi==x;==0)and fis asymmetric binary

e Else 1
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Mixed Distance

< Where

If feature f Is
e Interval-scaled, use this formula

Kit = Xjf

f
od.f = |

e Where h runs over non-missing values for feature f.
e Ensures distance returned is in range [0,1].
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Mixed Distance

+ Where

If feature f Is
e Binary or categorical

[ ] If Xif - i’ d” — O
e Else, d; =1
e Ordinal

e Compute ranks and apply the ordinal scaling
e Then use the interval-scaled distance measure.
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Mixed Distance

+ Where

If feature f IS

e Ratio-Scaled

e Do logarithmic (or similar) transform and then apply
interval-scaled distance.

e Or, treat as ordinal data.
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Mixed Distance

Zl Ij Ij
o d(i,j)="
Z

f=

4, Distance calculation for each feature will
be O to 1.

+ Final distance calculation will be [0.0,
1.0]
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Example
Student Test-1 Test-2 Test-3 Test-3
(categorical) | (ordinal) (ratio) (logarithmic)
1 Code-A Excellent 445 2.68
2 Code-B Fair 22 1.34
3 Code-C Good 164 2.21
4 Code-A Excellent 1,210 3.08
0-1 1.34-2.68
1+ |1 O|)+(|308 134|)
d(2,1) = - VOT29% 1 20.92
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Mixed Distance

4, Problems

Doesn’t permit use, for interval-scaled,
more advanced distance functions.

Binary and categorical values have more
potential impact than other types of
features.
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Mixed Distance

4 MinkowskKi

“
“
“

Heterogeneous Overlap-Euclidean Metric
Heterogeneous Value Difference Metric

nterpolated Value Difference Metric

4. Windowed Value Difference Metric
4o K*

Violates some of the conditions for distance
measure.

+~ Not a complete list.
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Questions?



