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Book Information

Data Mining, Concepts and Techniques
⚫ Han et al.: Chapter  2, section 4 (2nd Edition, 

Chapter 7, Section 2, Types of Data in Cluster 
Analysis).

Advances in Instance-Based Learning 
Algorithms 
⚫ Dissertation by D. Randall Wilson, August 1997.

⚫ Chapters 4 and 5.

Prototype Styles of Generalization
⚫ Thesis by D. Randall Wilson, August 1994.

⚫ Chapters 3.



Data

Each instance (point, record, example, 

entity, sample, observation)

⚫ Composed of one or more features.

Feature (attribute, variable, field, 

dimension, characteristic)

⚫ Composed of a data type

⚫ Data type has a range of values.



Data Types

Quantitative

⚫ Interval-Scaled
⚫ Real

⚫ Integer

⚫ Ratio-Scaled
⚫ Discrete

⚫ Continuous



Data Types

Qualitative

⚫ Binary

⚫ Symmetric

⚫ Asymmetric

⚫ Ordinal

⚫ Discrete
⚫ Continuous

Others

⚫ Vectors

⚫ Shape

⚫ Etc.



Comparing Instances

How does one compare instances?

⚫ Clustering

⚫ Classification

⚫ Instance-Base Classifiers

⚫ Artificial Neural Networks

⚫ Support Vector Machines

Distance Functions (Measures)



Distance Measures

Properties

⚫ d(i,j)  0

⚫ d(i,i) = 0

⚫ d(i,j) = d(j,i)

⚫ d(i,j)  d(i,k) + d(k,j)



Interval-Scaled Variables

Many Different Distance Measures

⚫ Euclidean

⚫ Manhattan (City Block)

⚫ Minkowski

For purpose of discussion, assume all 
features in data point are Interval-
Scaled.



Euclidean

Also called the L2 norm

Assumes a straight-line from two points

Where

⚫ i, j are two different instances

⚫ n is the number of interval-features

⚫ xiz is the value at zth feature value for Xi.
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Manhattan

Also classed the L1 norm

Non-Linear.

Where

⚫ i, j are two different instances

⚫ n is the number of interval-features

⚫ xiz is the value at zth feature value for Xi.
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Minkowski

Euclidean and Manhattan

⚫ Special Cases

Where p is a positive integer

Also called the Lp norm fuction
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Minkowski

Not all features are equal.

⚫ Some are irrelevant

⚫ Some are should be highly influential

Where, wz is the ‘weight’ of zth feature, 

where wz >= 0.
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Example

Xi = (1,2), Xj = (3,5)

Euclidean:

Manhattan:

Minkowski (p = 3):

⚫
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Other Distance Measures

Camberra

Chebychev

Quadratic

Mahalanobis

Correlation

Chi-Squared

Kendall’s Rank Correlation

And so forth.



Problem

Feature value ranges may distort 

results.

Example:

⚫ Feature 1:  [0, 2]

⚫ Feature 2:  [-2, 2]

Changes in feature 2, in the distance 

functions, has greater impact.



Scaling

Scale each feature to a range

⚫ [0,1]

⚫ [-1, 1]

Possible Issue

⚫ Say feature range is [0, 2].

⚫ 99% of the data >= 1.5

⚫ Outliers have large impact on distance

⚫ Normal values have almost none.



Normalize

Modify each feature so

⚫ Mean (mf) = 0

⚫ Standard Deviation (sf) = 1

,

where 

⚫ yif is the new feature value

⚫ N is the number of data points.
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Z-Score

where 

⚫ zf is the z-score

⚫ sf is the mean absolute deviation
⚫ More robust to outliers, compared to standard 

deviation.
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Symmetric Binary

Assume, for now, all features are 

symmetric binary.

How to compare?

⚫ Can use Euclidean, Manhattan, or 

Minkowski functions.

⚫ Symmetric binary similarity



Symmetric Binary

q, r, s and t are counts. 

Object i

Object j
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Symmetric Binary

Properties

⚫ Range is [0, 1]

⚫ 0 indicates perfect match

⚫ 1 indicates no matches
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Asymmetric Binary

Assume, for now, all features are 
asymmetric binary.

Like Symmetric Binary

⚫ Can use Euclidean, Manhattan, or 
Minkowski functions.

Alternatively, can use

⚫ Asymmetric binary similarity



Asymmetric Binary

q, r, s and t are counts. 
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Asymmetric Binary

Properties

⚫ Range is [0, 1]

⚫ 0 indicates perfect match

⚫ 1 indicates no matches

⚫ Note, as (0==0) is considered unimportant, 
it is not factored in.
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Examples

Set
⚫ Y and P to 1

⚫ N to 0

Symmetric
⚫ d(Jack, Mary) = (0 + 1) / 6 = 0.167

Asymmetric
⚫ d(Jack, Mary) = (0 + 1) / (2 + 0 + 1) = 0.33

Name Fever Cough Test-1 Test-2 Test-3 Test-4

Jack Y N P N N N

Mary Y N P N P N



Categorical

Where

⚫ p = number of variable

⚫ m = number of matches
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Example

d(2, 1) = (1 – 0) / 1 = 1

d(1, 4) = (1 – 1) / 1 = 0

Student Test-1

(categorical)

Test-2

(ordinal)

Test-3

(ratio)

1 Code-A Excellent 445

2 Code-B Fair 22

3 Code-C Good 164

4 Code-A Excellent 1,210



Categorical

Weighting

⚫ Can add weights to 

⚫ Increase effect of m

⚫ Increase importance of variables with more 

states

⚫ Can do this for Binary as well.

⚫ Convention

⚫ Some of weights should be equal to 1.



Categorical – Other measures

Value Difference Metric

⚫ For Classification problems (not Clustering).

⚫ Estimates conditional probabilities for each feature 

value for each class.

⚫ Distance is based on difference in conditional 

probabilities.

⚫ Includes a weighting scheme.

Modified Value Difference Metric

⚫ Handles weight estimation differently.



Value Difference Metric (VDM)

Where
⚫ P(xif,g) = conditional probability of the class g 

occuring, given the value xi for feature f.

⚫ C is the number of classes

⚫ n is the number of features

⚫ q is either 1 or 2.

Note, for simplification, weights are not 
included.
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Ordinal

Assume all Features are Ordinal.

Feature f has Mf ordered states, representing 
ranking 1, 2, …, Mf.

For each instance i
⚫ For each feature f

⚫ Replace value xif by corresponding rank rif

⚫

To calculate d(i,j)
⚫ Use Interval-Scaled Distance Functions.
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Ordinal

Like Interval-Scaled

⚫ Different Ordinal features may have 

different number of states.

⚫ This leads to different features having 

different implicit weights.

⚫ Hence, scaling necessary.
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Example

Mappings
⚫ Fair = 1, Good = 2, Excellent = 3

Normalized Values
⚫ Fair = 0.0, Good = 0.5, Excellent = 1.0

Student Test-1

(categorical)

Test-2

(ordinal)

Test-3

(ratio)

1 Code-A Excellent 445

2 Code-B Fair 22

3 Code-C Good 164

4 Code-A Excellent 1,210



Example

Euclidean:

Student Test-1

(categorical)

Test-2

(ordinal)

Test-3

(ratio)

1 Code-A Excellent 445

2 Code-B Fair 22

3 Code-C Good 164

4 Code-A Excellent 1,210

( ) 5.05.00)3,2(
2
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Ordinal – Other Measures

Hamming Distance

Absolute Difference

Normalized Absolute Difference

Normalized Hamming Distance



Ratio-Scaled

Can’t treat directly as Interval-Scaled

⚫ The scale for Ratio-Scaled would lead to 
distortion of results.

Apply 

⚫ a logarithmic transformation first.
⚫ yif = log(xif)

⚫ Other type of transformation.

Treat result as continuous Ordinal Data.



Example

Student Test-1

(categorical)

Test-2

(ordinal)

Test-3

(ratio)

Test-3

(logarithmic)

1 Code-A Excellent 445 2.68

2 Code-B Fair 22 1.34

3 Code-C Good 164 2.21

4 Code-A Excellent 1,210 3.08

Euclidean: ( ) 87.021.208.3)3,4(
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Mixed Types

The above approaches assumed that all 

features are the same type!

This is rarely the case.

Need a distance function that handles 

all types.



Mixed Distance

Where

⚫ dij, for feature f is

⚫ 0

⚫ If either xif or xjf is missing

⚫ (xif == xjf == 0) and f is asymmetric binary

⚫ Else 1
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Mixed Distance

Where

⚫ If feature f is

⚫ Interval-scaled, use this formula

⚫

⚫ Where h runs over non-missing values for feature f.

⚫ Ensures distance returned is in range [0,1].
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Mixed Distance

Where

⚫ If feature f is

⚫ Binary or categorical

⚫ If xif == xjf, dij = 0

⚫ Else, dij = 1

⚫ Ordinal

⚫ Compute ranks and apply the ordinal scaling

⚫ Then use the interval-scaled distance measure.



Mixed Distance

Where

⚫ If feature f is

⚫ Ratio-Scaled

⚫ Do logarithmic (or similar) transform and then apply 

interval-scaled distance.

⚫ Or, treat as ordinal data.



Mixed Distance

Distance calculation for each feature will 

be 0 to 1.

Final distance calculation will be [0.0, 

1.0]
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Example

Student Test-1

(categorical)

Test-2

(ordinal)

Test-3

(ratio)

Test-3

(logarithmic)

1 Code-A Excellent 445 2.68

2 Code-B Fair 22 1.34

3 Code-C Good 164 2.21

4 Code-A Excellent 1,210 3.08
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Mixed Distance

Problems

⚫ Doesn’t permit use, for interval-scaled, 

more advanced distance functions.

⚫ Binary and categorical values have more 

potential impact than other types of 

features.



Mixed Distance

Minkowski

Heterogeneous Overlap-Euclidean Metric

Heterogeneous Value Difference Metric

Interpolated Value Difference Metric

Windowed Value Difference Metric

K*
⚫ Violates some of the conditions for distance 

measure.

Not a complete list.



Questions?


