Types of Data How to Calculate Distance?

Dr. Ryan Benton and Vijay Raghavan February 4, 2020

Book Information

Data Mining, Concepts and Techniques

- Han et al.: Chapter 2, section 4 (2nd Edition, Chapter 7, Section 2, *Types of Data in Cluster Analysis).*
- Advances in Instance-Based Learning Algorithms
 - Dissertation by D. Randall Wilson, August 1997.
 - Chapters 4 and 5.
- Prototype Styles of Generalization
 - Thesis by D. Randall Wilson, August 1994.
 - Chapters 3.

Data

Each instance (point, record, example, entity, sample, observation)
 Composed of one or more features.

Feature (attribute, variable, field, dimension, characteristic)

- Composed of a data type
- Data type has a range of values.

Data Types

- Quantitative
 - Interval-Scaled
 - Real
 - Integer
 - Ratio-Scaled
 - Discrete
 - Continuous

Data Types

Qualitative

- Binary
 - Symmetric
 - Asymmetric
- Ordinal
 - Discrete
 - Continuous
- Others
 - Vectors
 - Shape
 - Etc.

Comparing Instances

How does one compare instances?
Clustering
Classification

Instance-Base Classifiers
Artificial Neural Networks
Support Vector Machines

Distance Functions (Measures)

Distance Measures

◆ Properties

 d(i,j) ≥ 0
 d(i,i) = 0
 d(i,j) = d(j,i)
 d(i,j) ≤ d(i,k) + d(k,j)

Interval-Scaled Variables

- Many Different Distance Measures
 Euclidean
 Manhattan (City Block)
 - Minkowski
- For purpose of discussion, assume all features in data point are Interval-Scaled.

Euclidean

Also called the L₂ norm
 Assumes a straight-line from two points

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{in} - x_{jn})^2}$$

Where

• i, j are two different instances

- n is the number of interval-features
- x_{iz} is the value at z^{th} feature value for X_i .

Manhattan

Also classed the L₁ norm Non-Linear.

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{in} - x_{jn}|$$

Where

i, j are two different instances
n is the number of interval-features
x_{iz} is the value at zth feature value for X_i.

Minkowski

Euclidean and Manhattan Special Cases

$$= d(i,j) = \left(\left| x_{i1} - x_{j1} \right|^p + \left| x_{i2} - x_{j2} \right|^p + \dots + \left| x_{in} - x_{jn} \right|^p \right)^{1/p}$$

- Where *p* is a positive integer
- Also called the L_p norm fuction

Minkowski

Not all features are equal.
Some are irrelevant
Some are should be highly influential

$$= d(i, j) = \left(w_1 |x_{i1} - x_{j1}|^p + w_2 |x_{i2} - x_{j2}|^p + \dots + w_n |x_{in} - x_{jn}|^p \right)^{1/p}$$

• Where, w_z is the 'weight' of z^{th} feature, where $w_z \ge 0$.

Example

•
$$X_i = (1,2), X_j = (3,5)$$

• Euclidean: $d(i, j) = \sqrt{(1-3)^2 + (2-5)^2} = 3.61$ • Manhattan: d(i, j) = |1-3| + |2-5| = 5• Minkowski (p = 3): • $d(i, j) = (|1-3|^3 + |2-5|^3)^{\frac{1}{3}} = (8+27)^{\frac{1}{3}} = 3.27$

Other Distance Measures

- Camberra
- Chebychev
- Quadratic
- Mahalanobis
- Correlation
- Chi-Squared
- Kendall's Rank Correlation
- And so forth.

Problem

Feature value ranges may distort results.

Example:

- Feature 1: [0, 2]
- Feature 2: [-2, 2]
- Changes in feature 2, in the distance functions, has greater impact.

Scaling

- Scale each feature to a range
 [0,1]
 [-1, 1]
- Possible Issue
 - Say feature range is [0, 2].
 - 99% of the data >= 1.5
 - Outliers have large impact on distance
 - Normal values have almost none.

Normalize

Modify each feature so Mean (m_f) = 0 Standard Deviation (σ_f) = 1 x_{if} - m_f 1 |2 |2 |2

•
$$y_{if} = \frac{x_{if} - m_f}{\sigma_f}$$
, $\sigma_f = \frac{1}{N} \sqrt{|x_{1f} - m_f|^2 + |x_{2f} - m_f|^2 + ... + |x_{Nf} - m_f|^2}$

where

- y_{if} is the new feature value
- N is the number of data points.

•
$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

• $s_f = \frac{1}{N} \left(|x_{1f} - m_f| + |x_{2f} - m_f| + \dots + |x_{Nf} - m_f| \right)$

- where
 - z_f is the z-score
 - s_f is the mean absolute deviation
 - More robust to outliers, compared to standard deviation.

Symmetric Binary

Assume, for now, all features are symmetric binary.

- How to compare?
 - Can use Euclidean, Manhattan, or Minkowski functions.
 - Symmetric binary similarity

Symmetric Binary

Object j Object i	1	0	sum
1	q	r	q + r
0	S	t	s + t
sum	q + s	r + t	р

• q, r, s and t are counts.

Symmetric Binary

$$d(i,j) = \frac{r+s}{p}$$

Properties

- Range is [0, 1]
- 0 indicates perfect match
- 1 indicates no matches

Asymmetric Binary

Assume, for now, all features are asymmetric binary.

Like Symmetric Binary

- Can use Euclidean, Manhattan, or Minkowski functions.
- Alternatively, can use
 - Asymmetric binary similarity

Asymmetric Binary

Object j Object i	1	0	sum
1	q	r	q + r
0	S	t	s + t
sum	q + s	r + t	р

• q, r, s and t are counts.

Asymmetric Binary

•
$$d(i, j) = \frac{r+s}{q+r+s}$$

Properties

- Range is [0, 1]
- 0 indicates perfect match
- I indicates no matches
- Note, as (0==0) is considered unimportant, it is not factored in.

Examples

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Y	N	Р	Ν	Ν	Ν
Mary	Y	Ν	Р	Ν	Р	N

- Set
 - Y and P to 1
 - N to 0
- Symmetric
 - d(Jack, Mary) = (0 + 1) / 6 = 0.167
- Asymmetric
 - d(Jack, Mary) = (0 + 1) / (2 + 0 + 1) = 0.33

Categorical

•
$$d(i, j) = \frac{p - m}{p}$$

Where

• p = number of variable

m = number of matches

Example

Student	Test-1 Test-2		Test-3
	(categorical)	(ordinal)	(ratio)
1	Code-A	Excellent	445
2	Code-B	Fair	22
3	Code-C	Good	164
4	Code-A	Excellent	1,210

$$d(2, 1) = (1 - 0) / 1 = 1$$
$$d(1, 4) = (1 - 1) / 1 = 0$$

Categorical

Weighting

- Can add weights to
 - Increase effect of m
 - Increase importance of variables with more states
 - Can do this for Binary as well.
- Convention
 - Some of weights should be equal to 1.

Categorical – Other measures

Value Difference Metric

- For Classification problems (not Clustering).
- Estimates conditional probabilities for each feature value for each class.
- Distance is based on difference in conditional probabilities.
- Includes a weighting scheme.
- Modified Value Difference Metric
 - Handles weight estimation differently.

Value Difference Metric (VDM)

•
$$d(i, j) = \sum_{f=1}^{n} \sum_{g=1}^{C} \left(P(x_{if}, g) - P(x_{jf}, g) \right)^{q}$$

Where

- P(x_{if},g) = conditional probability of the class g occuring, given the value x_i for feature f.
- C is the number of classes
- n is the number of features
- q is either 1 or 2.
- Note, for simplification, weights are not included.

Ordinal

- Assume all Features are Ordinal.
- Feature f has M_f ordered states, representing ranking 1, 2, ..., M_f.
- For each instance i
 - For each feature f
 - Replace value x_{if} by corresponding rank r_{if}
 - $r_{if} \in [1, ..., M_f]$
- To calculate d(i,j)
 - Use Interval-Scaled Distance Functions.

Ordinal

Like Interval-Scaled

- Different Ordinal features may have different number of states.
- This leads to different features having different implicit weights.
- Hence, scaling necessary.

$$y_{if} = \frac{r_{if} - 1}{M_f - 1}$$

Example

Student	Test-1 Test-2		Test-3
	(categorical)	(ordinal)	(ratio)
1	Code-A	Excellent	445
2	Code-B	Fair	22
3	Code-C	Good	164
4	Code-A	Excellent	1,210

Mappings

• Fair = 1, Good = 2, Excellent = 3

Normalized Values

• Fair = 0.0, Good = 0.5, Excellent = 1.0

Example

Student	Test-1	Test-2	Test-3
	(categorical)	(ordinal)	(ratio)
1	Code-A	Excellent	445
2	Code-B	Fair	22
3	Code-C	Good	164
4	Code-A	Excellent	1,210

• Euclidean: $d(2,3) = \sqrt{(0-0.5)^2} = 0.5$

Ordinal – Other Measures

- Hamming Distance
- Absolute Difference
- Normalized Absolute Difference
- Normalized Hamming Distance

Ratio-Scaled

Can't treat directly as Interval-Scaled
 The scale for Ratio-Scaled would lead to distortion of results.

Apply

• a logarithmic transformation first.

• $y_{if} = log(x_{if})$

• Other type of transformation.

Treat result as continuous Ordinal Data.

Example

Student	Test-1	Test-2	Test-3	Test-3
	(categorical)	(ordinal)	(ratio)	(logarithmic)
1	Code-A	Excellent	445	2.68
2	Code-B	Fair	22	1.34
3	Code-C	Good	164	2.21
4	Code-A	Excellent	1,210	3.08

• Euclidean: $d(4,3) = \sqrt{(3.08 - 2.21)^2} = 0.87$

Mixed Types

The above approaches assumed that all features are the same type!

This is rarely the case.

Need a distance function that handles all types.

Where

- δ_{ij} , for feature f is

• 0

- If either x_{if} or x_{jf} is missing
- $(x_{if} == x_{jf} == 0)$ and f is asymmetric binary

Else 1

Where If feature f is Interval-scaled, use this formula $d_{ij}^{f} = \frac{|x_{if} - x_{jf}|}{\max_{h} x_{hf} - \min_{h} x_{hf}}$

- Where h runs over non-missing values for feature f.
- Ensures distance returned is in range [0,1].

Where

If feature f is

- Binary or categorical
 - If $x_{if} == x_{jf}, d_{ij} = 0$
 - Else, d_{ij} = 1
- Ordinal
 - Compute ranks and apply the ordinal scaling
 - Then use the interval-scaled distance measure.

Where

If feature f is

- Ratio-Scaled
 - Do logarithmic (or similar) transform and then apply interval-scaled distance.
 - Or, treat as ordinal data.

- Distance calculation for each feature will be 0 to 1.
- Final distance calculation will be [0.0, 1.0]

Example

Student	Test-1	Test-2	Test-3	Test-3
	(categorical)	(ordinal)	(ratio)	(logarithmic)
1	Code-A	Excellent	445	2.68
2	Code-B	Fair	22	1.34
3	Code-C	Good	164	2.21
4	Code-A	Excellent	1,210	3.08

$$d(2,1) = \frac{1(1) + 1\left(\frac{|0-1|}{1-0}\right) + \left(\frac{|1.34 - 2.68|}{3.08 - 1.34}\right)}{3} = 0.92$$

Problems

- Doesn't permit use, for interval-scaled, more advanced distance functions.
- Binary and categorical values have more potential impact than other types of features.

Minkowski

- Heterogeneous Overlap-Euclidean Metric
- Heterogeneous Value Difference Metric
- Interpolated Value Difference Metric
- Windowed Value Difference Metric
- 🗣 K*
 - Violates some of the conditions for distance measure.
- Not a complete list.

Questions?