Data Mining

Vijay Raghavan

raghavan@louisiana.edu The Center for Advanced Computer Studies University of Louisiana at Lafayette Lafayette, La., USA

CONTENTS

- **#** The Motivation
- **#** Knowledge Discovery in Databases (KDD)

Data Mining

- Related Fields
- Research Issues
- > Tasks
- **#** Association Mining Problem
- **#** Classification Mining Problem
- **#** Conclusions

THE MOTIVATION

"We are drowning in information, but starving for knowledge."

John Naisbett

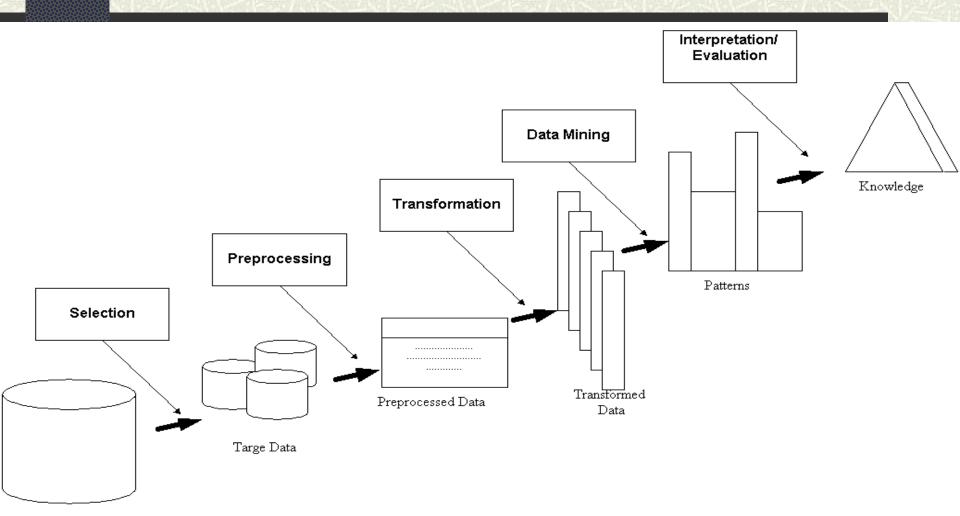
KNOWLEDGE DISCOVERY IN DATABASES- Definition

A hot buzzword for a class of database applications that look for patterns or relationships in data that are:

- Hidden,
- Previously unknown and
- Potentially useful

KDD: Definition

Extract (discover):


interesting andpreviously unknown

knowledge from very large real world databases.

KDD: Definition

- **#** More formally:
 - Valid,
 - Novel, Potentially useful or Desired
 - Ultimately understandable.

KDD- PROCESS

7

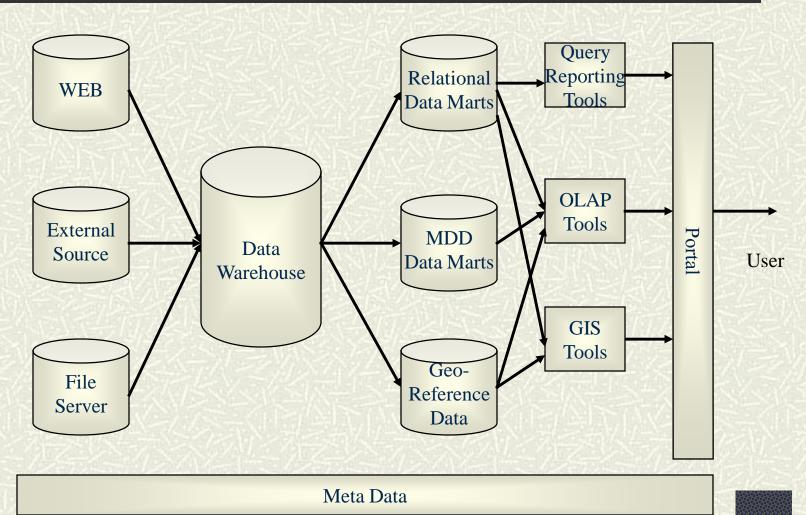
Data

KDD vs. DATA MINING

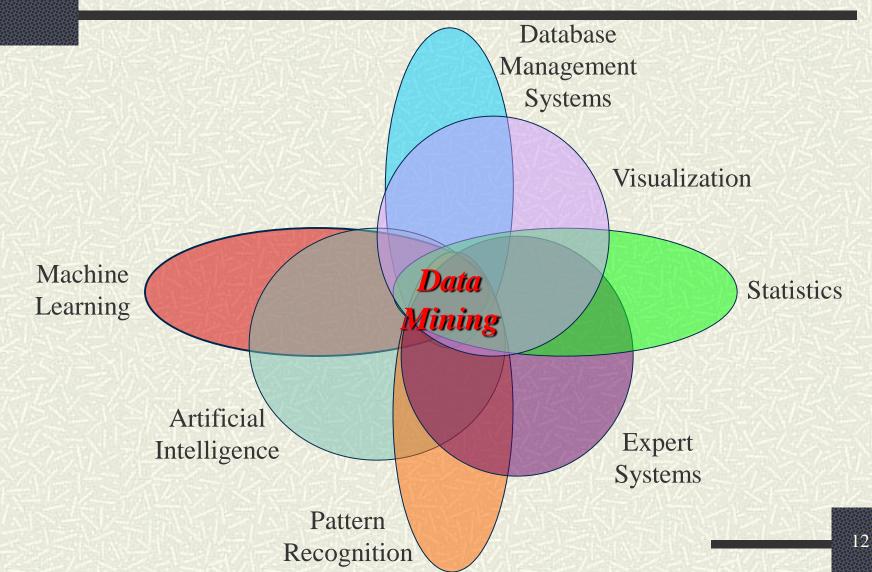
Synonyms (?)KDD

More than just finding pattern

Mining, dredging and fishing


KDD- Related Fields

- **#** Data Warehousing
- **#** On-Line Analytical Processing (OLAP)
- **#** Database Marketing
- # Exploratory Data Analysis (EDA)


Data Warehousing

 A data warehouse is a subject-oriented, integrated, time-variant and nonvolatile collection of data in support of management's decision making process.

OLAP and Data Warehousing

Data Mining: Related Areas

Database versus Data Mining

Query

- DB: Well Defined & SQL
- DM: Poorly Defined & Various Languages
- **#** Data
 - DB: Operational (and generally relational)
 - DM: Not Operational.
- **#** Output
 - **DB**: Precise, subset of the database.
 - DM: Varies.

Examples

Database

- Find all people with last name Raghavan.
- Identify all customers who have bought more than 10,000 dollars
- **#** Data Mining
 - Find those who have poor credit
 - Find all those who like the same cars
 - Find all items that are often (frequently) purchased with milk.
 - Predict the value of the housing market.

Statistics

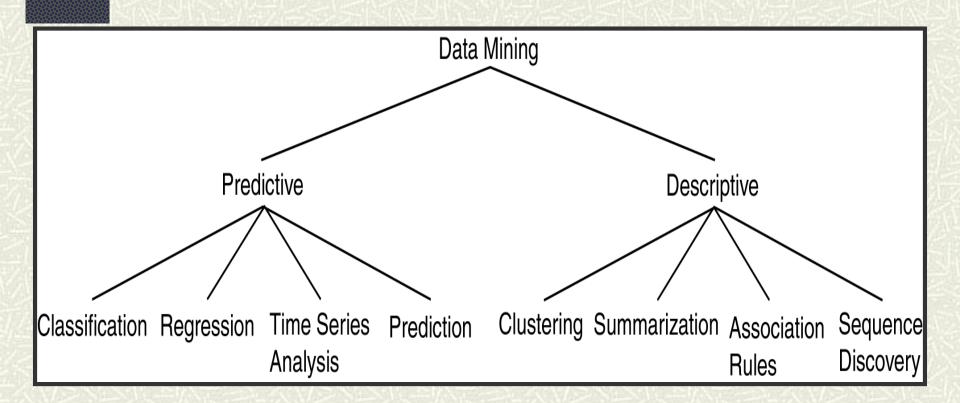
ISimple descriptive models

- **#** Traditionally:
 - A model created from a sample of the data to the entire dataset.
- **#** Exploratory Data Analysis:
 - Data can actually drive the creation of the model
 - Opposite of traditional statistical view.

#Presupposes a distribution

Machine Learning

- Machine Learning: area of AI that examines how to write programs that can learn.
- **#** Types of models
 - Classification
 - Prediction (Regression)
- **Types of Learning:**
 - Supervised
 - Unsupervised
- **Traditionally**
 - Small Datasets
 - 'Complete' Data


Data Mining: Research Issues

- **#** Ultra large data
- **#** Noisy data
- **♯** Null values
- **#** Incomplete data
- **#** Redundant data
- **#** Dynamic aspects of data

Data Mining: Tasks

#Association **#**Classification **#**Clustering **#**Estimation **#** Data Visualization **#** Deviation Analysis **#** etc

ata Mining Models and Tasks

ASSOCIATION MINING PROBLEM

Deriving association rules from data: Given a set of items $I = \{i_1, i_2, \ldots, i_n\}$ and a set of transactions $S = \{s_1, s_2, \ldots, s_m\}$, each transaction $s_i \in S$, such that $s_i \subseteq I$, an **association rule** is defined as $X \Rightarrow Y$, where $X \subset I$, $Y \subset I$ and $X \cap Y = \emptyset$. describes the existence of a relationship between the two itemsets X and Y.

Measurements

Measures to define the strength of the relationship between two itemsets *X* and *Y*

Measure of Confidence

Confidence $(X \Rightarrow Y) = \frac{P(X,Y)}{P(X)}$

The percentage of transactions that contain *Y* among those transaction containing *X*.

Applications of Associations

- \blacksquare I = Products, S = Baskets
- \blacksquare I = Cited Articles, S = Technical Articles
- **#** I = Incoming Links, S = Web pages
- \blacksquare I = Keywords, S = Documents
- \blacksquare I = Term papers, S = Sentences

Classification Mining Problem

- Pattern Recognition and Machine Learning communities
- **#** Generally aimed at models of the data.
- **#** Often includes both
 - Categorization
 - Prediction (Regression)
- **#** Supervised.

Clustering Mining Problem

- # Assumption: Data, naturally, falls into groups.
 - Overlapping or Non-Overlapping
- **#** What are the groups?
 - And what data falls within each group.
- **#** Unsupervised.

Measures

Error
Categorization

Number Bad Assignments/Total Assignments

Prediction

Mean Squared Error

In truth, a number of measures have been proposed.

Note about 'Data'

- **#** Various types:
 - Text
 - Strings
 - Numeric
 - Sound
 - Image
 - Relations
 - Etc.

CONCLUSIONS

- KDD has interesting problems
 It is an inter-disciplinary field
 No matter your expertise, you can find an interesting niche
- **#** Many high-demand applications (e.g. CRM)