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-e are drowning in information, 
bu st arving for knowledge 
- John Naisbett 

act 
explosive growth of many business, government, and scientific databases 

-- :ar outpaced our ability to interpret and digest this data, creating a need 

a new generation of tools and techniques for automated and intelligent 

~ analysis. These tools and techniques are the subject of the rapidly 

~g field of knowledge discovery in databases (KDD) and are the subject of 

-- book. This chapter presents an overview of the state of the art in this field. 

: 5rst clarify our view of the relation between knowledge discovery and data 
~g. We begin with a definition of the KDD process and basic data mining 

:=c-dlods. We proceed to cover application issues in KDD including guidelines 

- selecting an application and current challenges facing practitioners in the 

=.: . The discussion relates methods and problems to applicable chapters in 

- ., book, with the goal of providing a unifying vision of the common overall 

_ ' shared by the chapters . 

. 1 What Is this Book About? 

t he last decade, we have seen an explosive growth in our capabilities 
-o both generate and collect data. Advances in scientific data collec
·on (e.g. from remote sensors or from space satellites), the widespread 
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introduction of bar codes for almost all commercial products, and the 
computerization of many business (e.g. credit card purchases) and gov
ernment transactions (e.g. tax returns) have generated a flood of data. 
Advances in data storage technology, such as faster, higher capacity, 
and cheaper storage devices (e.g. magnetic disks, CD-ROMS), better 
database management systems, and data warehousing technology, have 
allowed us to transform this data deluge into "mountains" of stored data. 

Representative examples are easy to find. In the business world, one 
of the largest databases in the world was created by Wal-Mart (a U.S. re
tailer) which handles over 20 million transactions a day (Babcock 1994). 
Most health-care transactions in the U.S. are being stored in comput
ers, yielding multi-gigabyte databases, which many large companies are 
beginning to analyze in order to control costs and improve quality (e.g. 
see Matheus, Piatetsky-Shapiro, & McNeill, this volume). Mobil Oil 
Corporation, is developing a data warehouse capable of storing over 100 
terabytes of data related to oil exploration (Harrison 1993). 

There are huge scientific databases as well. The human genome data
base project (Fasman, Cuticchia, & Kingsbury 1994) has collected giga
bytes of data on the human genetic code and much more is expected. 
A database housing a sky object catalog from a major astronomy sky 
survey (e.g. see Fayyad, Djorgovski, & Weir, this volume) consists of 
billions of entries with raw image data sizes measured in terabytes. The 
NASA Earth Observing System (EOS) of orbiting satellites and other 
spaceborne instruments is projected to generate on the order of 50 giga
bytes of remotely sensed image data per hour when operational in the 
late 1990s and early in the next century (Way & Smith 1991). 

Such volumes of data clearly overwhelm the traditional manual meth
ods of data analysis such as spreadsheets and ad-hoc queries. Those 
methods can create informative reports from data, but cannot analyze 
the contents of those reports to focus on important knowledge. A signif
icant need exists for a new generation of techniques and tools with the 
ability to intelligently and automatically assist humans in analyzing the 
mountains of data for nuggets of useful knowledge. These techniques 
and tools are the subject of the emerging field of knowledge discovery in 
databases (KDD). 

The interest in KDD has been increasing, as evidenced by the number 
of recent workshops (Piatetsky-Shapiro 1991, Piatetsky-Shapiro 1993, 
Ziarko 1994, Fayyad & Uthurusamy 1994), which culminated in the 
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First International Conference on Knowledge Discovery and Data Min
ing (Fayyad & Uthurusamy 1995). A growing number of publications 
have been devoted to the topic, including (Inmon & Osterfelt 1991, 
Piatetsky-Shapiro 1992, Parsaye & Chignell 1993, Cercone & Tsuchiya 
1993, Piatetsky-Shapiro et al1994, Piatetsky-Shapiro 1995). These var
ious publications and special issues document some of the many KDD 

applications which have been reported across diverse fields in business, 
government, medicine, and science (see Section 1.6). This book brings 
together the most recent relevant research in the field, continuing in the 
t radition of the first Know ledge Discovery in Databases book (Piatetsky
Shapiro and Frawley 1991) . 

The chapter begins by discussing the historical context of KDD and 
data mining and the choice of title for this book. We begin by explaining 
the distinction between the terms data mining and knowledge discovery, 
and explain how they fit together. The basic view we adopt is one where 
data mining refers to a class of methods that are used in some of the steps 
comprising the overall KDD process. We then provide a definition of KDD 

in Section 1.2. The typical steps involved in the KDD process are outlined 
and discussed in Section 1.3. We then focus in particular on data mining 
methods in the context of the overall KDD process. Section 1.4 covers the 
general issues involved in data mining while Section 1.5 discusses specific 
data mining methods. Having defined the basic terms and introduced 
some of the methods, we turn our attention to the practical application 
issues of KDD in Section 1.6. Section 1.7 concludes the chapter with 
a preview of the rest of the chapters in this volume. Throughout, we 
relate the discussion of particular methods and techniques to applicable 
chapters with the goal of providing a unifying vision of the common 
overall goals shared by the chapters constituting this book. 

1.1.1 About this Book's Title 

Historically the notion of finding useful patterns (or nuggets of knowl
edge) in raw data has been given various names, including knowledge 
discovery in databases, data mining, knowledge extraction, information 
discovery, information harvesting, data archaeology, and data pattern 
processing. The term knowledge discovery in databases, or KDD for short, 
was coined in 1989 to refer to the broad process of finding knowledge in 
data, and to emphasize the "high-level" application of particular data 
mining methods. The term data mining has bei:m commonly used by 
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statisticians, data analysts and the MIS (Management Information Sys
tems) community, while KDD has been mostly used by artificial intelli
gence and machine learning researchers. 

In this overview chapter we adopt the view that KDD refers to the over
all process of discovering useful knowledge from data while data mining 
refers to the application of algorithms for extracting patterns from data 
without the additional steps of the KDD process (such as incorporating 
appropriate prior knowledge and proper interpretation of the results). 
These additional steps are essential to ensure that useful information 
(knowledge) is derived from the data. Blind application of data mining 
methods (rightly criticised as "fishing" or "dredging," and sometimes 
a "mining," in the statistical literature) can be a dangerous activity in 
that invalid patterns can be discovered without proper interpretation. 

Thus, the overall process of finding and interpreting patterns from 
data is referred to as the KDD process, typically interactive and itera
tive, involving the repeated application of specific data mining methods 
or algorithms and the interpretation of the patterns generated by these 
algorithms. In sections to follow we will provide a more detailed defini
tion of the overall KDD process and a more detailed look at specific data 
mining methods. 

In combining the two terms "data mining" and "knowledge discovery" 
in the title of the book, we are attempting to build bridges between the 
statistical, database, and machine learning communities and appeal to 
a wider audience of information systems developers. The dual nature 
of the title reflects the contents of the book and the direction of the 
field, namely a focus on both types of issues: (i) the overall knowledge 
discovery process which includes preprocessing and postprocessing of 
data as well as interpretation of the discovered patterns as knowledge, 
and (ii) particular data mining methods and algorithms aimed solely at 
extracting patterns from raw data. 

1.1.2 Links Between KDD and Related Fields 

KDD is of interest to researchers in machine learning, pattern recogni
tion, databases, statistics, artificial intelligence, knowledge acquisition 
for expert systems, and data visualization. KDD systems typically draw 
upon methods, algorithms, and techniques from these diverse fields. The 
unifying goal is extracting knowledge from data in the context of large 
databases. 

L-
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In the fields of machine learning and pattern recognition, overlap with 
KDD lies in the study of theories and algorithms for systems which ex
tract patterns and models from data (mainly data mining methods). 
KDD focuses on the extension of these theories and algorithms to the 
problem of finding special patterns (ones that may be interpreted as 

seful or interesting knowledge, see the next section) in large sets of 
real-world data. KDD also has much in common with statistics, par
icularly exploratory data analysis (EDA). KDD systems often embed 

particular statistical procedures for modeling data and handling noise 
\Vithin an overall knowledge discovery framework. 

M achine discovery which targets the discovery of empirical laws from 
observation and experimentation (Shrager & Langley 1990), and causal 
m odeling for the inference of causal models from data (Spirtes, Gly
mour, & Scheines 1993) are related research areas. Kloesgen & Zytkow 
(this volume) provide a glossary of terms common to KDD and machine 
discovery. 

Another related area is data warehousing, which refers to the recently 
popular MIS trend for collecting and cleaning transactional data and 
making them available for on-line retrieval. A popular approach for 
analysis of data warehouses has been called OLAP (on-line analyti
cal processing), after a new set of principles proposed by Codd (1993). 
OLAP tools focus on providing multi-dimensional data analysis, which 
is superior to SQL (standard query language) in computing summaries 
and breakdowns along many dimensions. We view both knowledge dis
covery and OLAP as related facets of a new generation of intelligent 
information extraction and management tools. 

1.1.3 A Simple Illustrative Example 

In the discussion of KDD and data mining methods in this chapter, we 
shall make use of a simple example to make some of the notions more 
concrete. Figure 1.1 shows a simple two-dimensional artificial data set 
consisting of 23 cases. Each point on the graph represents a person who 
has been given a loan by a particular bank at some time in the past. 
The horizontal axis represents the income of the person, the vertical 
axis represents the total personal debt of the person (mortgage, car 
payments, etc.). The data has been classified into 2 classes: the x's 
represent persons who have defaulted on their loans, the o's represent 
persons whose loans are in good status with the bank. Thus, this simple 
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artificial data set could represent a historical data set which may contain 
useful knowledge from the point of view of the bank making the loans. 
Note that in actual KDD applications there are typically many more 
dimensions (up to several hundreds) and many more data points (many 
thousands or even millions) . The purpose here is to illustrate basic ideas 
on a small problem in 2-dimensional space. 
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X X 
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Figure 1.1 
A simple dat a set with 2 classes used for illustrative purposes. 

1.2 A Definition of Knowledge Discovery in Databases 

To reflect the recent developments and growth in KDD, we have revised 
the definition of KDD given in (Frawley, Piatetsky-Shapiro, & Matheus 
1991) . We first start with a general statement of this definition in words: 

Knowledge discovery in databases is the non-trivial process 
of identifying valid , novel, potentially useful, and ultimately 
understandable patterns in data. 

Let us examine t hese terms in more detail. 

• Data is a set of facts F (e.g., cases in a database). In our simple 
example of Figure 1.1, F is the collection of 23 cases with three 
fields each containing the values of debt, income, and loan status. 
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• Pattern is an expression E in a language L describing facts in a 
subset Fs of F. E is called a pattern if it is simpler (in some sense, 
see below) than the enumeration of all facts in Fs. For example, 
the pattern: "If income < $t, then person has defaulted on the 
loan" would be one such pattern for an appropriate choice of t. 
This pattern is illustrated graphically in Figure 1.2. 

0 

Debt 
0 0 

0 
0 

X 

0 
0 

0 
0 Loan 

t Income 

Figure 1.2 
Using a single threshold on the income variable to try to classify the loan data set. 

• Process: Usually in KDD process is a multi-step process, which 
involves data preparation, search for patterns, knowledge evalua
tion, and refinement involving iteration after modification. The 
process is assumed to be non-trivial-that is, to have some degree 
of search autonomy. For example, computing the mean income of 
persons in the loan example, while producing a useful result, does 
not qualify as discovery. 

• Validity: The discovered patterns should be valid on new data with 
some degree of certainty. A measure of certainty is a function C 
mapping expressions in L to a partially or totally ordered measure
ment space Me. An expression E in L about a subset Fs C F 
can be assigned a certainty measure c = C(E, F). For example, 
if the boundary for the pattern shown in Figure 1.2 is moved to 
the right, its certainty measure would drop since more good loans 
would be admitted into the shaded region (no loan). 

• Novel: The patterns are novel (at least to the system). Novelty 
can be measured with respect to changes in data (by comparing 
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current values to previous or expected values) or knowledge (how 
a new finding is related to old ones). In general, we assume this 
can be measured by a function N(E, F), which can be a boolean 
function or a measure of degree of novelty or unexpectedness. 

• Potentially Useful: The patterns should potentially lead to some 
useful actions, as measured by some utility function. Such a func
tion U maps expressions in L to a partially or totally ordered 
measure space Mu: hence, u = U(E, F). For example, in the loan 
data set this function could be the expected increase in profits to 
the bank (in dollars) associated with the decision rule shown in 
Figure 1.2. 

• Ultimately Understandable: A goal of KDD is to make patterns 
understandable to humans in order to facilitate a better under
standing of the underlying data. While this is difficult to measure 
precisely, one frequent substitute is the simplicity measure. Sev
eral measures of simplicity exist, and they range from the purely 
syntactic (e.g., the size of a pattern in bits) to the semantic (e.g., 
easy for humans to comprehend in some setting). We assume this 
is measured, if possible, by a function S mapping expressions E 
in L to a partially or totally ordered measure space Ms: hence, 
s = S(E,F). 

An important notion, called interestingness, is usually taken as an 
overall measure of pattern value, combining validity, novelty, usefulness, 
and simplicity. Some KDD systems have an explicit interestingness func
tion i = I(E, F, C, N, U, S) which maps expressions in L to a measure 
space MI. Other systems define interestingness indirectly via an order
ing of the discovered patterns. 

Given the notions listed above, we may state our definition of knowl
edge as viewed from the narrow perspective of KDD as used in this book. 
This is by no means an attempt to define "knowledge" in the philosoph
ical or even the popular view. The purpose of this definition is specify 
what an algorithm used in a KDD process may consider knowledge. 

• Knowledge: A pattern E E L is called knowledge if for some user
specified threshold i E M1, I(E, F, C, N, U, S) > i. 

Note that this definition of knowledge is by no means absolute. As a 
matter of fact, it is purely user-oriented, and determined by whatever 
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:unctions and thresholds the user chooses. For example, one instantia
·on of this definition is to select some thresholds c E Me, s E Ms, and 
E M,.., and calling a pattern E knowledge if and only if 

C(E , F) > c and S(E, F) > s and U(S, F) > u. 

3y appropriate settings of thresholds, one can emphasize accurate pre
··ctors or useful (by some cost measure) patterns over others. Clearly, 

- ere is an infinite space of how the mapping I can be defined. Such 
ecisions are left to the user and the specifics of the domain. 

Data Mining is a step in the KDD process consisting of par
ticular data mining algorithms that, under some acceptable 
computational efficiency limitations, produces a particular 
enumeration of patterns Ej over F (see Sections 1.4 and 1.5 
for more details) 

;.lote that the space of patterns is often infinite, and the enumeration of 
!>atterns involves some form of search in this space. The computational 
efficiency constraints place severe limits on the subspace that can be 
explored by the algorithm. 

KDD Pmcess is the process of using data mining methods 
(algorithms) to extract (identify) what is deemed knowledge 
according to the specifications of measures and thresholds, 
using the database F along with any required preprocessing, 
subsampling, and transformations of F. 

The data mining component of the KDD process is mainly concerned 
with means by which patterns are extracted and enumerated from the 
data. Knowledge discovery involves the evaluation and possibly inter
pretation of the patterns to make the decision of what constitutes knowl
edge and what does not. It also includes the choice of encoding schemes, 
preprocessing, sampling, and projections of the data prior to the data 
mining step. 

1.3 The KDD Process 

The KDD process is interactive and iterative, involving numerous steps 
with many decisions being made by the user. Brachman & Anand (this 
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Patterns 

Data 

+ Target Data 1 1 1 

L-----J-------J-----J-----Y 
Figure 1.3 
An overview of the steps comprising the KDD process. 

volume) give a practical view of the KDD process emphasizing the inter
active nature of the process. Here we broadly outline some of its basic 
steps: 

1. Developing an understanding of the application domain, the rele
vant prior knowledge, and the goals of the end-user. 

2. Creating a target data set: selecting a data set, or focusing on a 
subset of variables or data samples, on which discovery is to be 
performed. 

3. Data cleaning and preprocessing: basic operations such as the re
moval of noise or outliers if appropriate, collecting the necessary 
information to model or account for noise, deciding on strategies 
for handling missing data fields, accounting for time sequence in
formation and known changes. 

4. Data reduction and projection: finding useful features to represent 
the data depending on the goal of the task. Using dimensional
ity reduction or transformation methods to reduce the effective 
number of variables under consideration or to find invariant rep
resentations for the data. 

5. Choosing the data mining task: deciding whether the goal of the 
KDD process is classification, regression, clustering, etc. The vari
ous possible tasks of a data mining algorithm are described in more 
detail in Section 1.4.1. 

6. Choosing the data mining algorithm(s): selecting method(s) to be 
used for searching for patterns in the data. This includes deciding 
which models and parameters may be appropriate (e.g. models 
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for categorical data are different than models on vectors over the 
reals) and matching a particular data mining method with the 
overall criteria of the KDD process (e.g. the end-user may be 
more interested in understanding the model than its predictive 
capabilities-see Section 1.4.2). 

7. Data mining: searching for patterns of interest in a particular 
representational form or a set of such representations: classification 
rules or trees, regression, clustering, and so forth (see Section 1.5 
for details). The user can significantly aid the data mining method 
by correctly performing the preceding steps. 

8. Interpreting mined patterns, possible return to any of steps 1-7 
for further iteration. 

9. Consolidating discovered knowledge: incorporating this knowledge 
into the performance system, or simply documenting it and report
ing it to interested parties. This also includes checking for and re
solving potential conflicts with previously believed (or extracted) 
knowledge. 

The KDD process can involve significant iteration and may contain 
loops between any two steps. The basic flow of steps (although not the 
potential multitude of iterations and loops) are illustrated in Figure 1.3. 
Most previous work on KDD has focused on step 7- the data mining. 
However, the other steps are of considerable importance for the success
ful application of KDD in practice. See the chapter by Brachman & 
Anand, this volume, for a more elaborate account of this aspect. 

Having defined the basic notions and introduced the KDD process, we 
now focus on the data mining component, which has by far received the 
most attention in the literature. 

1.4 An Overview of Data Mining Methods 

The data mining component of the KDD process often involves repeated 
iterative application of particular data mining methods. The objective of 
this section is to present a unified overview of some of the most popular 
data mining methods in current use. We use the terms patterns and 
models loosely throughout this chapter: a pattern can be thought of 
as instantiation of a model, e.g. , f(x) = 3x2 + x is a pattern whereas 
f(x) = ax2 + {3x is considered a model. 
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Data mining involves fitting models to, or determining patterns from, 
observed data. The fitted models play the role of inferred knowledge: 
whether or not the models reflect useful or interesting knowledge is 
part of the overall, interactive KDD process where subjective human 
judgment is usually required. There are two primary mathematical for
malisms used in model fitting: the statistical approach allows for non
deterministic effects in the model (for example, f(x) =ax+ e where e 
could be a Gaussian random variable), whereas a logical model is purely 
deterministic (f(x) = ax) and does not admit the possibility of uncer
tainty in the modeling process. We will focus primarily on the statis
tical/ probabilistic approach to data mining: this tends to be the most 
widely-used basis for practical data mining applications given the typ
ical uncertainty about the exact nature of real-world data-generating 
processes. See the chapter by Elder & Pregibon (this volume) for a 
perspective from the field of statistics. 

Most data mining methods are based on concepts from machine learn
ing, pattern recognition and statistics: classification, clustering, graph
ical models, and so forth. The array of different algorithms for solving 
each of these problems can often be quite bewildering to both the ex
perienced data analyst and the novice. In · this section we offer a brief 
overview of data mining methods and in particular try to convey the 
notion that most (if not all) methods can be viewed as extensions or 
hybrids of a few basic techniques and principles. 

The section begins by discussing the primary tasks of data mining and 
then shows that the data mining methods to address these tasks consist 
of three primary algorithmic components: model representation, model 
evaluation, and search. The section concludes by discussing particular 
data mining algorithms within this framework. 

1.4.1 The Primary Tasks of Data Mining 

The two "high-level" primary goals of data mining in practice tend to 
be prediction and description. Prediction involves using some variables 
or fields in the database to predict unknown or future values of other 
variables of interest. Description focuses on finding human-interpretable 
patterns describing the data. The relative importance of prediction and 
description for particular data mining applications can vary consider
ably. However , in the context of KDD, description tends to be more 
important than prediction. This is in contrast to pattern recognition 
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and machine learning applications (such as speech recognition) where 
prediction is often the primary goal (see Lehmann 1990, for a discussion 
:Tom a statistical perspective). 

The goals of predictio'n and description are achieved by using the 
:ollowing primary data mining tasks. 

0 

Debt 
0 

0 

0 
0 

0 Loan 

Income 

Figure 1.4 
A simple linear classification boundary for the loan data set: shaded region denotes 
class "no loan." 

• Classification is learning a function that maps (classifies) a data 
item into one of several predefined classes (Hand 1981; Weiss & 
Kulikowski 1991; McLachlan 1992). Examples of classification 
methods used as part of knowledge discovery applications include 
classifying trends in financial markets (Apte & Hong, this vol
ume) and automated identification of objects of interest in large 
image databases (Fayyad, Djorgovski, & Weir, this volume) . Fig
ure 1.4 shows a simple partitioning of the loan data into two class 
regions-note that it is not possible to separate the classes per
fectly using a linear decision boundary. The bank might wish to 
use the classification regions to automatically decide whether fu
ture loan applicants will be given a loan or not. 

• Regression is learning a function which maps a data item to a 
real-valued prediction variable. Regression applications are many, 
e.g., predicting the amount of biomass present in a forest given 
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ine 

Debt 

0 

X 

0 
0 

X 

Income 

Figure 1.5 
A simple linear regression for the loan data set. 

remotely-sensed microwave measurements, estimating the proba
bility that a patient will die given the results of a set of diagnostic 
tests, predicting consumer demand for a new product as a func
tion of advertising expenditure, and time series prediction where 
the input variables can be time-lagged versions of the prediction 
variable. Figure 1.5 shows the result of simple linear regression 
where "total debt" is fitted as a linear function of "income": the 
fit is poor since there is only a weak correlation between the two 
variables. 

• Clustering is a common descriptive task where one seeks to identify 
a finite set of categories or clusters to describe the data (Tittering
ton, Smith & Makov 1985: Jain & Dubes 1988). The categories 
may be mutually exclusive and exhaustive, or consist of a richer 
representation such as hierarchical or overlapping categories. Ex
amples of clustering applications in a knowledge discovery context 
include discovering homogeneous sub-populations for consumers in 
marketing databases and identification of sub-categories of spectra 
from infra-red sky measurements (Cheeseman & Stutz, this vol
ume). Figure 1.6 shows a possible clustering of the loan data set 
into 3 clusters: note that the clusters overlap allowing data points 
to belong to more than one cluster. The original class labels (de
noted by x's and o's in the previous figures) have been replaced 
by +'s to indicate that the class membership is no longer assumed 
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own. Closely related to clustering is the task of probability den
.ty estimation which consists of techniques for estimating from 
a a the joint multi-variate probability density function of all of 

- e variables/fields in the database (Silverman 1986). 

Cluster I 

Income 

? igure 1.6 
_-..simple clustering of the loan data set into 3 clusters. Note that original labels are 
~laced by +'s. 

• Summarization involves methods for finding a compact descrip
tion for a subset of data. A simple example would be tabulating 
the mean and standard deviations for all fields. More sophisti
cated methods involve the derivation of summary rules (Agrawal 
et al., this volume), multivariate visualization techniques, and the 
discovery of functional relationships between variables (Zembow
icz & Zytkow, this volume). Summarization techniques are often 
applied to interactive exploratory data analysis and automated 
report generation. 

• Dependency Modeling consists of finding a model which describes 
significant dependencies between variables. Dependency models 
exist at two levels: the structural level of the model specifies (of
ten in graphical form) which variables are locally dependent on 
each other, whereas the quantitative level of the model specifies 
the strengths of the dependencies using some numerical scale. For 
example, probabilistic dependency networks use conditional inde
pendence to specify the structural aspect of the model and proba-
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bilities or correlations to specify the strengths of the dependencies 
(Heckerman, this volume; Glymour et a!. , 1987). Probabilistic de
pendency networks are increasingly finding applications in areas as 
diverse as the development of probabilistic medical expert systems 
from databases, information retrieval, and modeling of the human 
genome. 

• Change and Deviation Detection focuses on discovering the most 
significant changes in the data from previously measured or nor
mative values (Berndt & Clifford, this volume; Guyon et a!. , this 
volume; Kloesgen, this volume; Matheus et a!. , this volume; Bas
seville & Nikiforov 1993). 

1.4.2 The Components of Data Mining Algorithms 

Having outlined the primary t asks of data mining, the next step is to 
construct algorithms to solve them. One can identify three primary 
components in any data mining algorithm: model representation, model 
evaluation, and search. This reductionist view is not necessarily com
plete or fully encompassing: rather, it is a convenient way to express 
the key concepts of data mining algorit hms in a relatively unified and 
compact manner (Cheeseman (1990) outlines a similar structure). 

• Model Representation is the language L for describing discoverable 
patterns. If the representation is too limited, then no amount of 
training time or examples will produce an accurate model for the 
data. For example, a decision t ree representation, using univari
ate (single-field) node-splits, partitions the input space into hyper
planes which are parallel to t he attribute axes. Such a decision-tree 
method cannot discover from data the formula x = y no matter 
how much training dat a it is given. Thus, it is import ant that a 
dat a analyst fully comprehend the representational assumptions 
which may be inherent t o a particular method. It is equally im
portant that an algorithm designer clearly stat e which representa
tional assumptions are being made by a particular algorit hm. Note 
that more powerful representational power for models increases the 
danger of overfitting the training dat a resulting in reduced predic
tion accuracy on unseen dat a. In addition the search becomes 
much more complex and interpretation of the model is typically 
more difficult. 
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• Model Evaluation estimates how well a particular pattern (a model 
and its parameters) meet the criteria of the KDD process. Evalu
ation of predictive accuracy (validity) is based on cross validation. 
Evaluation of descriptive quality involves predictive accuracy, nov
elty, utility, and understandability of the fitted model. Both logical 
and statistical criteria can be used for model evaluation. For ex
ample, the maximum likelihood principle chooses the parameters 
for the model which yield the best fit to the training data. 

• Search Method consists of two components: Parameter Search and 
Model Search. In parameter search the algorithm must search for 
the parameters which optimize the model evaluation criteria given 
observed data and a fixed model representation. For relatively 
simple problems there is no search: the optimal parameter esti
mates can be obtained in closed form. Typically, for more general 
models, a closed form solution is not available: greedy iterative 
methods are commonly used, e.g., the gradient descent method 
of backpropagation for neural networks. Model Search occurs as 
a loop over the parameter search method: the model representa
tion is changed so that a family of models are considered. For 
each specific model representation, the parameter search method 
is instantiated to evaluate the quality of that particular model. 
Implementations of model search methods tend to use heuristic 
search techniques since the size of the space of possible models of
ten prohibits exhaustive search and closed form solutions are not 
easily obtainable. 

1. 5 A Discussion of Popular Data Mining Methods 

There exist a wide variety of data mining methods: here we only focus 
on a subset of popular techniques. Each method is discussed in the 
context of model representation, model evaluation, and search. 

1.5.1 Decision Trees and Rules 

Decision trees and rules that use univariate splits have a simple represen
t ational form, making the inferred model relatively easy to comprehend 
by the user. However, the restriction to a particular tree or rule rep
resentation can significantly restrict the functional form (and thus the 
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approximation power) of the model. For example, Figure 1.2 illustrates 
the effect of a threshold "split" applied to the income variable for loan 
data set: it is clear that using such simple threshold splits (parallel to the 
feature axes) severely limit the type of classification boundaries which 
can be induced. If one enlarges the model space to allow more general 
expressions (such as multivariate hyperplanes at arbitrary angles), then 
the model is more powerful for prediction but may be much more dif
ficult to comprehend. There are a large number of decision tree and 
rule induction algorithms described in the machine learning and applied 
statistics literature (Breiman et al 1984; Quinlan 1992). 

To a large extent they are based on likelihood-based model evalua
tion methods with varying degrees of sophistication in terms of penal
izing model complexity. Greedy search methods, which involve growing 
and pruning rule and tree structures, are typically employed to explore 
the super-exponential space of possible models. Trees and rules are 
primarily used for predictive modeling, both for classification (Apte & 
Hong, this volume; Fayyad, Djorgovski, & Weir, this volume) and regres
sion, although they can also be applied to summary descriptive modeling 
(Agrawal et a!., this volume). 

1.5.2 Nonlinear Regression and Classification Methods 

These methods consist of a family of techniques for prediction which fit 
linear and non-linear combinations of basis functions (sigmoids, splines, 
polynomials) to combinations of the input variables. Examples include 
feedforward neural networks, adaptive spline methods, projection pur
suit regression, and so forth (see Friedman (1989), Cheng & Titterington 
(1994), and Elder & Pregibon (this volume) for more detailed discus
sions). Consider neural networks, for example. Figure 1.7 illustrates 
the type of non-linear decision boundary which a neural network might 
find for the loan data set. In terms of model evaluation, while networks 
of the appropriate size can universally approximate any smooth func
tion to any desired degree of accuracy, relatively little is known about 
the representation properties of fixed size networks estimated from finite 
data sets. In terms of model evaluation, the standard squared error and 
cross entropy loss functions used to train neural networks can be viewed 
as log-likelihood functions for regression and classification respectively 
(Geman, Bienenstock & Doursat 1992; Ripley 1994). Backpropagation 
is a parameter search method which performs gradient descent in param-
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:er (weight) space to find a local maximum of the likelihood function 
::-arting from random initial conditions. Nonlinear regression methods, 
- ough powerful in representational power, can be very difficult to inter
;>ret. For example, while the classification boundaries of Figure 1.7 may 
"Oe more accurate than the simple threshold boundary of Figure 1.2, the 
- eshold boundary has the advantage that the model can be expressed 

a simple rule of the form "if income is greater than threshold t then 
_oan will have good status" to some degree of certainty. 

0 

Debt 
0 

0 

0 

0 Loan 

Income 

Figure 1.7 
An example of classification boundaries learned by a non-linear classifier (such as a 
neural network) for the loan data set. 

1.5.3 Example-based Methods 

The representation is simple: use representative examples from the 
database to approximate a model, i.e. , predictions on new examples are 
derived from the properties of "similar" examples in the model whose 
prediction is known. Techniques include nearest-neighbor classification 
and regression algorithms (Dasarathy 1991) and case-based reasoning 
systems (Kolodner, 1993). Figure 1.8 illustrates the use of a nearest 
neighbor classifier for the loan data set: the class at any new point in 
the 2-dimensional space is the same as the class of the closest point in 
the original training data set. 

A potential disadvantage of example-based methods (compared with 
tree-based methods for example) is that a well-defined distance metric 



20 Fayyad, Piatetsky-Shapiro, & Smyth 
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0 Loan 

Income 

Figure 1.8 
Classification boundaries for a nearest neighbor classifier for the loan data set. 

for evaluating the distance between data points is required. For the loan 
data in Figure 1.8 this would not be a problem since income and debt 
are measured in the same units: but if one wished to include a vari
able such as the duration of the loan, then it would require more effort 
to define a sensible metric between the variables. Model evaluation is 
usually based on cross-validation estimates (Weiss & Kulikowski, 1991) 
of a prediction error: "parameters" of the model to be estimated can 
include the number of neighbors to use for prediction and the distance 
metric itself. Like non-linear regression methods, example-based meth
ods are often asymptotically quite powerful in terms of approximation 
properties, but conversely can be difficult to interpret since the model is 
implicit in the data and not explicitly formulated. Related techniques in
clude kernel density estimation (Silverman 1986) and mixture modeling 
(Titterington, Smith, & Makov 1985). 

1.5.4 Probabilistic Graphical Dependency Models 

Graphical models specify the probabilistic dependencies which under
lie a particular model using a graph structure (Pearl 1988; Whittaker, 
1990). In its simplest form, the model specifies which variables are di
rectly dependent on each other. Typically these models are used with 
categorical or discrete-valued variables, but extensions to special cases, 
such as Gaussian densities, for real-valued variables are also possible. 
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Within the artificial intelligence and statistical communities these mod
els were initially developed within the framework of probabilistic expert 
ystems: the structure of the model and the parameters (the conditional 

probabilities attached to the links of the graph) were elicited from ex
perts. More recently there has been significant work in both the AI 
and statistical communities on methods whereby both the structure and 
parameters of graphical models can be learned from databases directly 
(Buntine, this volume; Beckerman, this volume). Model evaluation cri
teria are typically Bayesian in form and parameter estimation can be 
a mixture of closed form estimates and iterative methods depending on 
whether a variable is directly observed or hidden. Model search can con-
ist of greedy hill-climbing methods over various graph structures. Prior 

knowledge, such as a partial ordering of the variables based on causal re
lations, can be quite useful in terms of reducing the model search space. 
Although still primarily at the research phase, graphical model induc
tion methods are of particular interest to KDD since the graphical form 
of the model lends itself easily to human interpretation. 

1.5.5 Relational Learning Models 

While decision-trees and rules have a representation restricted to propo
itionallogic, relational learning (also known as inductive logic program

ming) uses the more flexible pattern language of first-order logic. A 
relational learner can easily find formulas such as X= Y. Most research 
o far on model evaluation methods for relational learning are logical in 

nature. The extra representational power of relational models comes at 
the price of significant computational demands in terms of search. See 
Dzeroski (this volume) for a more detailed discussion. 

Given the broad spectrum of data mining methods and algorithms, 
our brief overview is inevitably limited in scope: there are many data 
mining techniques, particularly specialized methods for particular types 
of data and domains, which were not mentioned specifically in the dis
cussion. We believe the general discussion on data mining tasks and 
components has general relevance to a variety of methods. For example, 
consider time series prediction: traditionally this has been cast as a pre
dictive regression task (autoregressive models and so forth). Recently, 
more general models have been developed for time series applications 
such as non-linear basis function, example-based, and kernel methods. 
Furthermore, there has been significant interest in descriptive graphi-
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cal and local data modeling of time series rather than purely predictive 
modeling (Weigend & Gershenfeld 1993). Thus, although different algo
rithms and applications may appear quite different on the surface, it is 
not uncommon to find that they share many common components. Un
derstanding data mining and model induction at this component level 
clarifies the task of any data mining algorithm and makes it easier for 
the user to understand its overall contribution and applicability to the 
KDD process. 

We would like to remind the reader that our discussion and overview 
of data mining methods has been both cursory and brief. There are two 
important points we would like to make clear: 

1. Automated Search: Our brief overview has focused mainly on auto
mated methods for extracting patterns and/or models from data. 
While this is consistent with the definition we gave earlier, it does 
not necessarily represent what other communities might refer to 
as data mining. For example, some use the term to designate any 
manual search of the data, or search assisted by queries to a DBMS 
or humans visualizing patterns in data as data mining. In other 
communities, it is used to refer to the automated correlation of 
data from transactions or the automated generation of transaction 
reports. We choose to focus only on methods that contain certain 
degrees of search autonomy. 

2. Beware the Hype: The state-of-the-art in automated methods in 
data mining is still in a fairly early stage of development. There are 
no established criteria for deciding which methods to use in which 
circumstances, and many of the approaches are based on crude 
heuristic approximations to avoid the expensive search required to 
find optimal or even good solutions. hence, the reader should be 
careful when confronted with overstated claims about the great 
ability of a system to mine useful information from large (or even 
small) databases. 

1.6 Application Issues 

In the business world, the most successful and widespread application of 
KDD is "Database Marketing," which is a method of analyzing customer 
databases, looking for patterns among existing customer preferences and 
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:sing those patterns for more targeted selection of future customers. 
3usiness Week, a popular business magazine in the United States, car
_:ed a cover story on Database Marketing (Berry 1994) that estimated 
- at over 50% of all retailers are using or planning to use database mar
~ting. The reason is simple-significant results can be obtained using 
- · approach: e.g. a 15-20% percent increase in credit-card purchases 
:eported by American Express (Berry 1994). 

Another major business use of data mining methods is the analysis and 
se ection of stocks and other financial instruments. There are already 
_umerous investment companies (Barr and Mani 1994) which pick stocks 
:sing a variety of advanced data mining methods. 

Several successful applications have been developed for analysis and 
:-eporting on change in data. These include Coverstory from IRJ (Schmitz, 
_.:Umstrong, & Little 1990), Spotlight from A.C. Nielsen (Anand & Kahn 
:992) for supermarket sales data, and KEFIR from GTE, for health care 
C.atabases (Matheus, Piatetsky-Shapiro, & McNeil, this volume) 

Fraud detection and prevention is another area where KDD plays a 
:ole. While there have been many applications, published information 
- for obvious reasons, not readily available. Here we mention just a 
:ew noteworthy examples. A system for detecting healthcare provider 
::aud in electronically submitted claims, b.as been developed at Travelers 
!nsurance by Major and Riedinger (1992). The Internal Revenue Service 
has developed a pilot system for selecting tax returns for audits. Neural 
network based tools, such as Nestor FDS (Blanchard 1994) have been 
developed for detecting credit-card fraud and are reportedly watching 
millions of accounts. 

A number of interesting and important scientific applications of KDD 
have also been developed. Example application areas in science include 

• Astronomy: The SKICAT system from JPL/Caltech is used by 
astronomers to automatically identify stars and galaxies in a large
scale sky survey for cataloging and scientific analysis (see Fayyad, 
Djorgovski, & Weir, this volume). 

• Molecular Biology: Systems have been developed for finding pat
terns in molecular structures (Conklin, Fortier, and Glasgow 1993) 
and in genetic data (Holder, Cook, and Djoko 1994). 

• Global Climate Change Modeling: Spatia-temporal patterns such 
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as cyclones are automatically found from large simulated and ob
servational datasets (Stolorz et a!. 1994). 

Other recent applications are described in (Fayyad & Uthurusamy 
1994-1995, Piatetsky-Shapiro 1993). 

1.6.1 Guidelines for Selecting a Potential KDD Application 

The criteria for selecting applications can be divided into practical and 
technical. The practical criteria for KDD projects are similar to those 
for other application of advanced technology, while the technical ones 
are more specific to KDD. 

Practical criteria include consideration of the potential for signifi
cant impact of an application. For business applications this could 
be measured by criteria such as greater revenue, lower costs, higher 
quality, or savings in time. For scientific applications the impact can be 
measured by the novelty and quality of the discovered knowledge and 
by increased access to data via automating manual analysis processes. 
Another important practical consideration is that no good alterna
tives exist: the solution is not easily obtainable by other standard 
means. Hence the ultimate user has a strong vested interest in insuring 
the success of the KDD venture. Organizational support is another 
consideration: there should be a champion for using new technology; 
e.g. a domain expert who can define a proper interestingness measure 
for that domain as well as participate in the KDD process. Finally, an 
important practical consideration is the potential for privacy / legal 
issues. This applies primarily to databases on people where one needs 
to guard against the discovered patterns raising legal or ethical issues of 
invasion of privacy. 

Technical criteria include considerations such as the availability of 
sufficient data (cases). The number of examples (cases) required for 
reliable inference of useful patterns from data varies a great deal with 
each particular application. In general, the more fields there are and the 
more complex are the patterns being sought, the more data are needed. 
However, strong prior knowledge (see below) can reduce the number of 
needed cases significantly. Another consideration is the relevance of 
attributes. It is important to have data attributes relevant to the dis
covery task: no amount of data will allow prediction based on attributes 
that do not capture the required information. 
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Furthermore, low noise levels (few data errors) is another consid
"' ation. High amounts of noise make it hard to identify patterns unless 

large number of cases can mitigate random noise and help clarify the 
aa~regate patterns. A related consideration is whether one can attach 
confidence intervals to extracted knowledge. In some applications, it 
i.s crucial to attach confidence intervals to predictions produced by the 
KDD system. This allows the user to calibrate actions appropriately. 

Finally, and perhaps one of the most important considerations is prior 
knowledge. It is very useful to know something about the domain
what are the important fields, what are the likely relationships, what is 
the user utility function, what patterns are already known, and so forth. 
Prior knowledge can significantly reduce the search in the data mining 
step and all the other steps in the KDD process. 

1.6.2 Privacy and Knowledge Discovery 

When dealing with databases of personal information, governments and 
businesses have to be careful to adequately address the legal and ethi
cal issues of invasion of privacy. Ignoring this issue can be dangerous, 
as Lotus found in 1990, when they were planning to introduce a CD
ROM with data on about 100 million American households. The stormy 
protest led to the withdrawal of that product (Rosenberg 1992). 

Current discussion centers around guidelines for what constitutes a 
proper discovery. The Organization for Economic Cooperation and De
velopment (OECD) guidelines for data privacy (O'Leary 1995), which 
have been adopted by most European Union countries, suggest that 
data about specific living individuals should not be analyzed without 
their consent. They also suggest that the data should only be collected 
for a specific purpose. Use for other purposes is possible only with the 
consent of the data subject or by authority of the law. 

In the U.S. there is ongoing work on draft principles for fair infor
mation use related to the National Information Infrastructure (Nil), 
commonly known as the "information superhighway." These principles 
permit the use of "transactional records," such as phone numbers called, 
credit card payments, etc., as long as such use is compatible with the 
original notice. The use of transactional records can be seen to also 
include discovery of patterns. 

In many cases (e.g. medical research, socio-economic studies) the goal 
is to discover patterns about groups, not individuals. While group pat-
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tern discovery appears not to violate the restrictions on personal data 
retrieval, an ingenious combination of several group patterns, especially 
in small datasets, may allow identification of specific personal informa
tion. Solutions which allow group pattern discovery while avoiding the 
potential invasion of privacy include removal or replacement of identify
ing fields, performing queries on random subsets of data, and combining 
individuals into groups and allowing only queries on groups. These and 
related issues are further discussed in (Piatetsky-Shapiro 1995b). 

1.6.3 Research and Application Challenges for KDD 

We outline some of the current primary research and application chal
lenges for knowledge discovery. This list is by no means exhaustive. 
The goal is to give the reader a feel for the types of problems that KDD 
practitioners wrestle with. We point to chapters in this book that are 
of relevance to the challenges we list. 

• Larger databases. Databases with hundreds of fields and tables, 
millions of records, and multi-gigabyte size are quite commonplace, 
and terabyte (1012 bytes) databases are beginning to appear. For 
example, Agrawal et al (this volume) present efficient algorithms 
for enumerating all association rules exceeding given confidence 
thresholds over large databases. Other possible solutions include 
sampling, approximation methods, and massively parallel process
ing (Holsheimer et al, this volume). 

• High dimensionality. Not only is there often a very large number of 
records in the database, but there can also be a very large number 
of fields (attributes, variables) so that the dimensionality of the 
problem is high. A high dimensional data set creates problems in 
terms of increasing the size of the search space for model induction 
in a combinatorially explosive manner. In addition, it increases the 
chances that a data mining algorithm will find spurious patterns 
that are not valid in general. Approaches to this problem include 
methods to reduce the effective dimensionality of the problem and 
the use of prior knowledge to identify irrelevant variables. 

• Overfitting. When the algorithm searches for the best parameters 
for one particular model using a limited set of data, it may over
fit the data, resulting in poor performance of the model on test 
data. Possible solutions include cross-validation, regularization, 
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and other sophisticated statistical strategies (Elder & Pregibon, 
- ·s volume). 

• A essing statistical significance. A problem (related to overfit-
. g) occurs when the system is searching over many possible mod

e . For example, if a system tests N models at the 0.001 signif
·cance level, then on average, with purely random data, N / 1000 
of these models will be accepted as significant. This point is fre
quent ly missed by many initial attempts at KDD. One way to deal 
"ith this problem is to use methods which adjust the test statis
tic as a function of the search, e.g., Bonferroni adjustments for 
independent tests. 

• Changing data and knowledge. Rapidly changing (non-stationary) 
data may make previously discovered patterns invalid. In addi
tion, the variables measured in a given application database may 
be modified, deleted, or augmented with new measurements over 
ime. Possible solutions include incremental methods for updating 

the patterns and treating change as an opportunity for discovery 
by using it to cue the search for patterns of change only (Matheus 
et a!, this volume) . 

• _Vfissing and noisy data. This problem is especially acute in busi
ness databases. U.S. census data reportedly has error rates of up to 
20%. Important attributes may be missing if the database was not 
designed with discovery in mind. Possible solutions include more 
sophisticated statistical strategies to identify hidden variables and 
dependencies (Beckerman, this volume; Smyth eta!., this volume). 

• Complex relationships between fields. Hierarchically structured at
tributes or values, relations between attributes, and more sophis
ticated means for representing knowledge about the contents of 
a database will require algorithms that can effectively utilize such 
information. Historically, data mining algorithms have been devel
oped for simple attribute-value records, although new techniques 
for deriving relations between variables are being developed (Dze
roski, this volume; Han and Fu, this volume). 

• Understandability of patterns. In many applications it is impor
tant to make the discoveries more understandable by humans. 
Possible solutions include graphical representations (Buntine, this 
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volume; Heckerman, this volume), rule structuring with directed 
acyclic graphs (Gaines, this volume), natural language generation 
(Matheus et al. , this volume), and techniques for visualization of 
data and knowledge. Rule refinement strategies (e.g. Major 1993; 
Kloesgen 1993) can be used to address a related problem: the 
discovered knowledge may be implicitly or explicitly redundant. 

• User interaction and prior knowledge. Many current KDD meth
ods and tools are not truly interactive and cannot easily incor
porate prior knowledge about a problem except in simple ways. 
The use of domain knowledge is important in all of the steps of 
the KDD process as outlined in Section 1.3. Bayesian approaches 
(e.g. Cheeseman & Stutz, this volume) use prior probabilities over 
data and distributions as one form of encoding prior knowledge. 
Simoudis et al (this volume) make use of deductive databases to 
discover knowledge that is then used to guide the data mining 
search. 

• Integration with other systems. A stand-alone discovery system 
may not be very useful. Typical integration issues include integra
tion with a DBMS (e.g. via a query interface), integration with 
spreadsheets and visualization tools, and accommodating real-time 
sensor readings. Examples of integrated KDD systems are de
scribed by Simoudis et al (this volume) and Shen et al (this vol
ume). 

1. 7 Organization of this Book 

The chapters of this book span fundamental issues of knowledge dis
covery, classification and clustering, trend and deviation analysis, de
pendency derivation, integrated discovery systems, augmented database 
systems, and application case studies. The contributing authors include 
researchers and practitioners in academia, government laboratories, and 
private industry, indicating the breadth of interest in the field. We have 
organized the book into seven parts and an appendix. 

Part I deals with fundamental issues in discovery. Brachman and 
Anand outline the state-of-the-practice of the KDD process. Buntine 
presents a unifying view of various data mining techniques under the 
broad area of graphical models. Elder and Pregibon provide the reader 
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aeneral statistical perspective on knowledge discovery and data mining. 
Part II deals with specific techniques for data mining. Dzeroski pre

sents an overview of recent developments relevant to KDD in inductive 
10gic programming (ILP). Cheeseman and Stutz present a Bayesian ap
proach to clustering and discuss the details of the AutoClass system. 
_\utoClass attempts to infer the most likely number of classes in the 
data, and the most likely parameterization of the probability distribu-
·ons chosen to model the dat a. Guyon, Matic, and Vapnik present a 
ovel approach for discovering informative patterns within a supervised 

earning framework and describe the application of their techniques to 
-data cleaning" of large optical character recognition databases. Gaines 
discusses the use of exception directed acyclic graphs (EDAGs) for effi
cient representation of induced knowledge. 

Part III presents methods for dealing with trend and deviation anal
·sis. Berndt and Clifford show how to adapt dynamic time warping 

(a dynamic programming technique used in speech recognition) to find
ing patterns in time series data. Kloesgen describes Explora, a multi
st rategy discovery assistant, and examines the options for discovering 
different types of deviations and other patterns. 

Part IV focuses on data mining techniques for deriving dependencies. 
Beckerman provides a survey of current research in the field of learning 
graphical models (also known as Bayesian networks) from data: graphi
cal models provide an efficient framework for representing and reasoning 
with joint probability distributions over multiple variables. Agrawal, 
Mannila, Srikant, Toivonen and Verkamo introduce a variety of novel 
extensions of earlier work on deriving association rules from transaction 
data: empirical results demonstrate that the new algorithms are much 
more efficient than previous versions. Zembowicz and Zytkow show how 
to use contingency tables to discover different types of knowledge, in
cluding dependencies and taxonomies. 

Part V focuses on integrated discovery systems which include multi
ple components, employ several data mining techniques, and generally 
address issues in solving some real-world problems. Simoudis, Livezey, 
and Kerber discuss how rule induction, deductive databases, and data 
visualization can be used cooperatively to create high quality, rule-based 
models by mining data stored in relational databases. Sherr, Mitbander, 
Ong, and Zaniolo present a framework that uses metaqueries to inte
grate inductive learning methods with deductive database technologies 
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in the context of knowledge discovery from databases, and illustrate this 
with three case studies. Han and Fu show how to use attribute-oriented 
induction (which generalizes the relevant subset of data attribute-by
attribute) to find patterns of different types, including characteristic 
and classification rules. 

Part VI includes two chapters on approaches for next generation data
base systems. Hsu and Knoblock show how learning can be used to 
generate rules for semantic query optimization. Holsheimer, Kersten, 
and Siebes present a parallel DBMS engine, called Data Surveyor, which 
has special features for optimizing various types of data mining. 

Part VII presents several real and successful applications. Fayyad, 
Djorgovski, and Weir present SKICAT, a system which automatically 
detects and classifies sky objects from image data resulting from a ma
jor astronomical sky survey. The data mining techniques used in SKI
CAT enabled solving a difficult, scientifically significant problem, and 
resulted in a system that can outperform astronomers in its accuracy 
in classifying faint sky objects. It is now used to automatically cata
log an estimated two billion objects. Matheus, Piatetsky-Shapiro, and 
McNeill present a framework for determining the interestingness of devi
ations from normative and previous values and show its implementation 
in the KEFIR system for the analysis of Healthcare data. Smyth, Burl, 
Fayyad, and Perona address the inconsistencies of human classifications 
in automating the catalog of a million small volcanoes in the 30,000 
Venus images returned by the Magellan spacecraft. Apte and Hong 
show how to use minimal rule generation and contextual feature analy
sis techniques for extracting useful information from securities data to 
predict equity returns. 

We conclude the book with an epilogue by Uthurusamy. The appendix 
provides a list of terms used in the KDD literature and their equivalents 
in other related fields. The goal of Appendix A by Kloesgen and Zytkow, 
is to provide the seeds for a common terminology in the rapidly growing 
KDD field. Appendix B by Piatetsky-Shapiro provides pointers to the 
many resources for Knowledge Discovery and Data Mining, including 
software, datasets, and publications that are available via the Internet 
and the World-Wide Web. 

- _ _: -- E.F. 1993. Providi o; 
Analysts: An IT Ma · ~ 

- · , D.; For t ier, S.; ani. C 
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