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Supervised Learning → RL

? “3-3”?
Human label

It is challenging to label data in some tasks.

? Cat
Human label

…… machine can know the results are good or not.



Machine Learning 
≈ Looking for a Function

Environment

Observation Action

Reward

Function 
input

Function 
output

Action =   
f( Observation )

Actor

Find a policy maximizing 
total reward 



Example: Playing Video Game

• Space invader

fire

Score 
(reward)

Kill the 
aliens

Termination: all the aliens are killed, 
or your spaceship is destroyed.

shield



Example: Playing Video Game

Observation ActionActor

“right”

reward = 0

Reward

Environment



Example: Playing Video Game

Observation ActionActor

“fire”

reward = 5 
if killing an alien.

Reward

Environment

Find an actor maximizing expected reward. 



Example: Learning to play Go

Environment

Observation Action

Reward

Next Move



Example: Learning to play Go

Environment

Observation Action

Reward

If win, reward = 1

If loss, reward = -1

reward = 0 in most cases

Find an actor maximizing expected reward. 



Step 1: 
function with 

unknown               

Step 2: define 
loss from 

training data

Step 3: 
optimization 

Machine Learning is so simple ……



• Input of neural network: the observation of machine 
represented as a vector or a matrix
• Output neural network : each action corresponds to a 

neuron in output layer

……

Policy Network 
(Actor)

pixels
fire

right

left
Scores of  
actions

0.7
0.2

0.1

Sample based 
on scores

Step 1: Function with Unknown 

Classification Task!!!



Start with 
observation 𝑠! Observation 𝑠" Observation 𝑠#

Action 𝑎!: “right”  

Obtain reward 
𝑟! = 0 

Action 𝑎" : “fire”  
(kill an alien)

Obtain reward 
𝑟" = 5 

Step 2: Define “Loss”



Start with 
observation 𝑠! Observation 𝑠" Observation 𝑠#

Step 2: Define “Loss”

After many turns

Action 𝑎$  

Obtain reward 𝑟$ 

Game Over
(spaceship destroyed)

This is an episode.

𝑅 =(
%&!

$

𝑟%

Total reward 
(return): 

What we want 
to maximize



Step 3: Optimization 𝜏 = 𝑠!, 𝑎!, 𝑠", 𝑎", ⋯
Trajectory

Actor

𝑠!

𝑎!

Env

𝑠"

Env

𝑠!

𝑎!

Actor

𝑠"

𝑎"

Env

𝑠#

𝑎"

……

Reward

𝑟!

Reward

𝑟"

𝑅 𝜏 =(
%&!

$

𝑟%

NetworkNetwork

They are 
black box …

sample

How to do the optimization here is 
the main challenge in RL.

c.f. GAN

… with randomness 



Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions



Critic

• A critic does not directly determine the action.
• Given an actor π, it evaluates how good the actor is
• State value function 𝑉' 𝑠
• When using actor 𝜋, the cumulated reward expects to 

be obtained after visiting state s 

𝑉!s
𝑉' 𝑠

scalar

𝑉' 𝑠 is large 𝑉' 𝑠 is smaller

The output values of a critic 
depend on the actor evaluated.



Critic

𝑉()* 𝑃𝑒𝑛𝑐𝑖𝑙 = bad

𝑉+),-	/012 𝑃𝑒𝑛𝑐𝑖𝑙 = good



How to estimate 𝑉! 𝑠

• Monte-Carlo (MC) based approach
• The critic watches 𝜋 playing the game

After seeing 𝑠3,
Until the end of the episode, 
the cumulated reward is 𝐺3 

After seeing 𝑠4,
Until the end of the episode, 
the cumulated reward is 𝐺4 

𝑉' 𝑠3𝑉!𝑠3 𝐺3 

𝑉' 𝑠4𝑉!𝑠4 𝐺4 



How to estimate 𝑉! 𝑠

• Temporal-difference (TD) approach 
⋯𝑠" , 𝑎" , 𝑟" , 𝑠"#$⋯

𝑉' 𝑠%𝑉!𝑠%

𝑉' 𝑠%5!𝑉!𝑠%5!

𝑉' 𝑠% = 𝑉' 𝑠%5! + 𝑟%

𝑉' 𝑠% − 𝑉' 𝑠%5! 𝑟%-

Some applications have very long episodes, so that 
delaying all learning until an episode's end is too slow.



MC v.s. TD

𝑉' 𝑠3𝑉!𝑠3 𝐺3 
Larger variance

𝑉' 𝑠%𝑉!𝑠% 𝑉' 𝑠%5! 𝑉! 𝑠%5!𝑟 +

Smaller variance
May be inaccurate

𝐺3 is the summation 
of many steps

𝑉𝑎𝑟 𝑘𝑋 = 𝑘"𝑉𝑎𝑟 𝑋



MC v.s. TD

• The critic has the following 8 episodes
• 𝑠3, 𝑟 = 0, 𝑠4, 𝑟 = 0, END
• 𝑠4, 𝑟 = 1, END 
• 𝑠4, 𝑟 = 1, END
• 𝑠4, 𝑟 = 1, END
• 𝑠4, 𝑟 = 1, END
• 𝑠4, 𝑟 = 1, END
• 𝑠4, 𝑟 = 1, END
• 𝑠4, 𝑟 = 0, END

[Sutton, v2, 
Example 6.4]

(The actions are ignored here.)

𝑉! 𝑠% =?

𝑉! 𝑠& = 3/4

0? 3/4?

Monte-Carlo:

Temporal-difference:

𝑉! 𝑠% = 0

𝑉! 𝑠% = 𝑉! 𝑠& + 𝑟
3/43/4 0



Another Critic

• State-action value function 𝑄' 𝑠, 𝑎
• When using actor 𝜋, the cumulated reward expects to 

be obtained after taking a at state s

𝑄!
s 𝑄' 𝑠, 𝑎

scalar
a

𝑄' 𝑠, 𝑎 = 𝑙𝑒𝑓𝑡

𝑄' 𝑠, 𝑎 = 𝑓𝑖𝑟𝑒
𝑄' 𝑠, 𝑎 = 𝑟𝑖𝑔ℎ𝑡𝑄!

for discrete action only

s



State-action value function

https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15N
atureControlDeepRL.pdf



Another Way to use Critic: 
Q-Learning

𝜋 interacts with 
the environment

Learning 𝑄! 𝑠, 𝑎Find a new actor 
𝜋' “better” than 𝜋

TD or MC

?

𝜋 = 𝜋'



Q-Learning

• Given 𝑄! 𝑠, 𝑎 , find a new actor 𝜋' “better” than 𝜋
• “Better”: 𝑉!! 𝑠 ≥ 𝑉! 𝑠 , for all state s

𝜋' 𝑠 = 𝑎𝑟𝑔max
%
𝑄! 𝑠, 𝑎

Ø𝜋' does not have extra parameters. It depends on Q
ØNot suitable for continuous action a (solve it later)



𝜋' 𝑠 = 𝑎𝑟𝑔max
%
𝑄! 𝑠, 𝑎

𝑉!! 𝑠 ≥ 𝑉! 𝑠 , for all state s

𝑉! 𝑠 ≤ 𝑄! 𝑠, 𝜋' 𝑠

= 𝐸[𝑟"#$ + 𝑉! 𝑠"#$ |𝑠" = 𝑠, 𝑎" = 𝜋' 𝑠" ]

≤ 𝐸[𝑟"#$ + 𝑄! 𝑠"#$, 𝜋' 𝑠"#$ |𝑠" = 𝑠, 𝑎" = 𝜋' 𝑠" ]

= 𝐸[𝑟"#$ + 𝑟"#( + 𝑉! 𝑠"#(	 | … ]

≤ 𝐸[𝑟"#$ + 𝑟"#( + 𝑄! 𝑠"#(, 𝜋' 𝑠"#( | … ]

𝑉! 𝑠 = 𝑄! 𝑠, 𝜋 𝑠
≤ max

%
𝑄! 𝑠, 𝑎 = 𝑄! 𝑠, 𝜋' 𝑠

Q-Learning

…	 ≤ 𝑉!! 𝑠



Target Network

𝑄!𝑠%

𝑄!
𝑠%5!

𝑟% +

𝑎%

𝜋 𝑠%5!

Q' 𝑠%, 𝑎%

Q' 𝑠%5!, 𝜋 𝑠%5!

⋯𝑠" , 𝑎" , 𝑟" , 𝑠"#$⋯
Q' 𝑠%, 𝑎%

= 𝑟% + Q' 𝑠%5!, 𝜋 𝑠%5!

regression

fixed

fixed value

update

After updating N times

Target 
Network



Exploration

• The policy is based on Q-function

𝑎 = 𝑎𝑟𝑔max
3
𝑄 𝑠, 𝑎

𝑎 = H
𝑎𝑟𝑔max

3
𝑄 𝑠, 𝑎 ,	

𝑟𝑎𝑛𝑑𝑜𝑚,	

𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1 − 𝜀

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This is not a good way 
for data collection.

𝑠
𝑎!
𝑎"
𝑎# 𝑄 𝑠, 𝑎 = 0

𝑄 𝑠, 𝑎 = 0

𝑄 𝑠, 𝑎 = 0
1 Always sampled

Never explore

Never explore

Epsilon Greedy

Boltzmann Exploration

𝑃 𝑎|𝑠 =
𝑒𝑥𝑝 𝑄 𝑠, 𝑎

∑% 𝑒𝑥𝑝 𝑄 𝑠, 𝑎

𝜀 would decay during learning



Replay Buffer

𝜋 interacts with 
the environment

Learning 𝑄! 𝑠, 𝑎Find a new actor 
𝜋' “better” than 𝜋

𝜋 = 𝜋'

Buffer 

…
…

exp
exp
exp
exp

𝑠%, 𝑎%, 𝑟%, 𝑠%5!Put the experience into buffer.

The experience in the 
buffer comes from 
different policies.
Drop the old experience 
if the buffer is full.



Replay Buffer

𝜋 interacts with 
the environment

Learning 𝑄! 𝑠, 𝑎Find a new actor 
𝜋' “better” than 𝜋

𝜋 = 𝜋'

Buffer 

…
…

exp
exp
exp
exp

Put the experience into buffer.

In each iteration:

1. Sample a 
batch

2. Update Q-
function

Off-policy

𝑠%, 𝑎%, 𝑟%, 𝑠%5!



Typical Q-Learning Algorithm

• Initialize Q-function 𝑄, target Q-function R𝑄 = 𝑄
• In each episode
• For each time step t
• Given state 𝑠%, take action 𝑎% based on Q (epsilon 

greedy)
• Obtain reward 𝑟%, and reach new state 𝑠%5!
• Store (𝑠%, 𝑎%, 𝑟%, 𝑠%5!) into buffer
• Sample (𝑠0, 𝑎0, 𝑟0, 𝑠05!) from buffer (usually a batch)
• Target 𝑦 = 𝑟0 +max3

R𝑄 𝑠05!, 𝑎
• Update the parameters of 𝑄 to make 𝑄 𝑠0, 𝑎0 close 

to 𝑦 (regression)
• Every C steps reset R𝑄 = 𝑄



Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions



Double DQN

• Q value is usually over-estimated



Double DQN

• Q value is usually over estimate

𝑄 𝑠%, 𝑎% 𝑟% +max3 𝑄 𝑠%5!, 𝑎

Tend to select the action 
that is over-estimated

𝑄 𝑠%5!, 𝑎



Double DQN

• Q value is usually over estimate

• Double DQN: two functions Q and Q’

𝑄 𝑠%, 𝑎% 𝑟% +max3 𝑄 𝑠%5!, 𝑎

Hado V. Hasselt, “Double Q-learning”, NIPS 2010
Hado van Hasselt, Arthur Guez, David Silver, “Deep Reinforcement Learning with 
Double Q-learning”, AAAI 2016

𝑄 𝑠%, 𝑎% 𝑟% + 𝑄′ 𝑠%5!, 𝑎𝑟𝑔max3 𝑄 𝑠%5!, 𝑎

If Q over-estimate a, so it is selected. Q’ would give it proper value.
How about Q’ overestimate? The action will not be selected by Q.

Target Network



Ziyu Wang, Tom Schaul, Matteo 
Hessel, Hado van Hasselt, Marc 
Lanctot, Nando de Freitas, “Dueling Network 
Architectures for Deep Reinforcement Learning”, 
arXiv preprint, 2015

State
s

State
s

Q(s,a)

Q(s,a)
= A(s,a)+V(s)

V(s)

A(s,a)Only change the 
network structure

Dueling DQN



Dueling DQN

3 3 3 1
1 -1 6 1
2 -2 3 1

state

action

1 3 -1 0
-1 -1 2 0
0 -2 -1 0

Q(s,a)

A(s,a)

V(s) 2 0 4 1

0

1

4

-1=
+

=
+

Average of 
column

sum of 
column = 0



1.0Dueling DQN

7
3
2

3
-1
-2

Normalize A(s,a) before 
adding with V(s)



Dueling DQN - Visualization

(from the link of the original paper)



Dueling DQN - Visualization

(from the link of the original paper)



Prioritized Reply

𝑄𝑠%

A𝑄
𝑠%5!

𝑟% +

𝑎%

𝑎%5!

𝑠" , 𝑎" , 𝑟" , 𝑠"#$

𝑄 𝑠%, 𝑎%

R𝑄 𝑠%5!, 𝑎%5!

Experience
Buffer

https://arxiv.org/abs/1511.05952?context=cs

TD error

The data with larger TD error in previous 
training has higher probability to be sampled.

Parameter update 
procedure is also modified.

𝑎%5! = 𝑎𝑟𝑔max
3

R𝑄 𝑠%5!, 𝑎



Multi-step

𝑠" , 𝑎" , 𝑟" , 𝑠"#$ Experience
Buffer

Balance between MC and TD

𝑠" , 𝑎" , 𝑟" , ⋯ , 𝑠"#) , 𝑎"#) , 𝑟"#) , 𝑠"#)#$

𝑄𝑠%

A𝑄
𝑠%565!

(
%!&%

%56
𝑟%! +

𝑎%

𝑎%565!

𝑄 𝑠%, 𝑎%

R𝑄 𝑠%565!, 𝑎%565!

𝑎%565! = 𝑎𝑟𝑔max
3

R𝑄 𝑠%565!, 𝑎



Noisy Net

• Noise on Action (Epsilon Greedy)

• Noise on Parameters

https://arxiv.org/abs/1706.01905
https://arxiv.org/abs/1706.10295

𝑎 = H
𝑎𝑟𝑔max

3
𝑄 𝑠, 𝑎 ,	

𝑟𝑎𝑛𝑑𝑜𝑚,	

𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1 − 𝜀

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑎 = 𝑎𝑟𝑔max
3

T𝑄 𝑠, 𝑎

The noise would NOT change in an episode.

Inject noise into the parameters 
of Q-function at the beginning of 
each episode

𝑄 𝑠, 𝑎 T𝑄 𝑠, 𝑎
Add noise



Noisy Net 

• Noise on Action
• Given the same state, the agent may takes 

different actions. 
• No real policy works in this way

• Noise on Parameters
• Given the same (similar) state, the agent takes 

the same action. 
•⟶ State-dependent Exploration

• Explore in a consistent way

Random 
Testing

Systematically...



Demo https://blog.openai.com/better-
exploration-with-parameter-noise/



Distributional Q-function

• State-action value function 𝑄' 𝑠, 𝑎
• When using actor 𝜋, the cumulated reward expects to 

be obtained after seeing observation s and taking a

Different distributions can have the same values.

-10 10 -10 10

𝑄' 𝑠, 𝑎



Distributional Q-function

𝑄' 𝑠, 𝑎! 𝑄' 𝑠, 𝑎#

𝑄' 𝑠, 𝑎"

𝑄!

s

A network with 3 outputs A network with 15 outputs
(each action has 5 bins)

𝑄!

s



Demo

https://youtu.be/yFBwyPuO2Vg



Rainbow

https://arxiv.org/abs/1710.02298



Rainbow

https://arxiv.org/abs/1710.02298
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Q-Learning for Continuous Actions



Continuous Actions

• Action 𝑎 is a continuous vector

𝑎 = 𝑎𝑟𝑔max
%
𝑄 𝑠, 𝑎

Solution 1

Solution 2
Using gradient ascent to solve the optimization 
problem.

Sample a set of actions: 𝑎!, 𝑎", ⋯ , 𝑎6
See which action can obtain the largest Q value



Continuous Actions

Solution 3 Design a network to make the optimization easy.

𝑄!s

𝜇 𝑠

Σ 𝑠

𝑉 𝑠

𝑄 𝑠, 𝑎 = − 𝑎 − 𝜇 𝑠
$
Σ 𝑠 𝑎 − 𝜇 𝑠 + 𝑉 𝑠

= 𝑎𝑟𝑔max
%
𝑄 𝑠, 𝑎𝜇 𝑠

vector

matrix

scalar



https://www.youtube.com/watch?v=ZhsEKTo7V04



Continuous Actions

Solution 4 Don’t use Q-learning 

Policy-based Value-based

Learning an Actor Learning a CriticActor + Critic
(Next Lecture)


