Reinforcement Learning

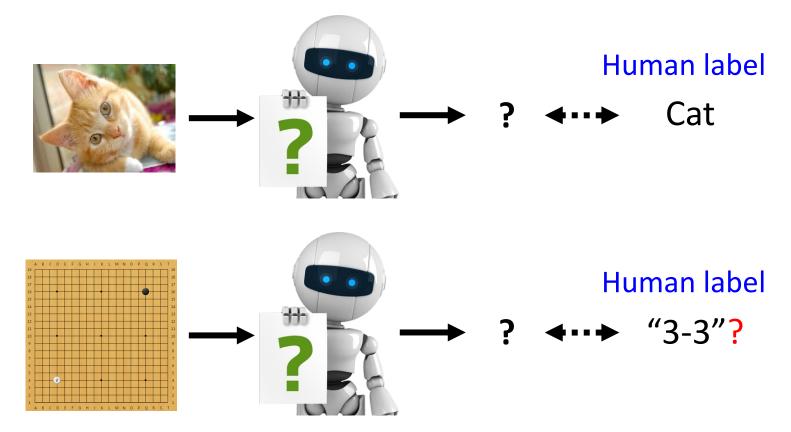
Dr. Hao Wang Louisiana State University

Slide courtesy of Dr. Hung-yi Lee, National Taiwan University

Outline

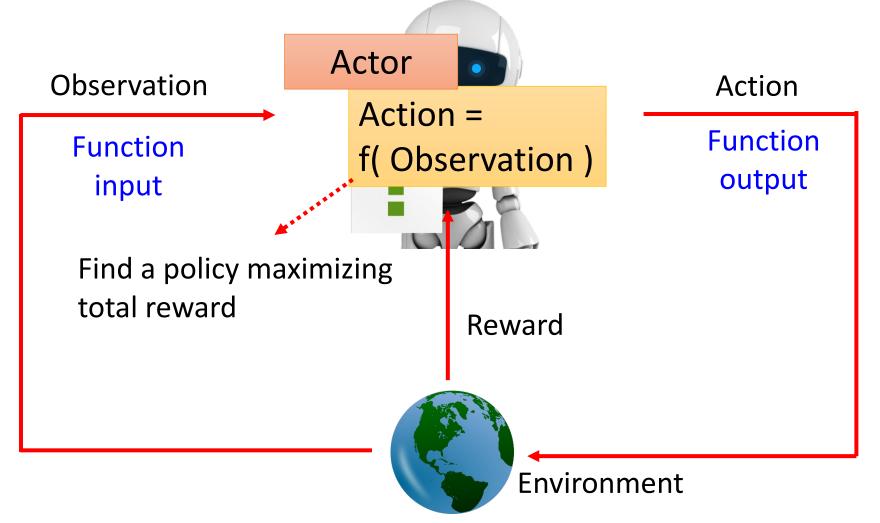
- FlappyBird Competition
- Introducing RL
- Q-learning

Supervised Learning \rightarrow RL



It is challenging to label data in some tasks. machine can know the results are good or not.

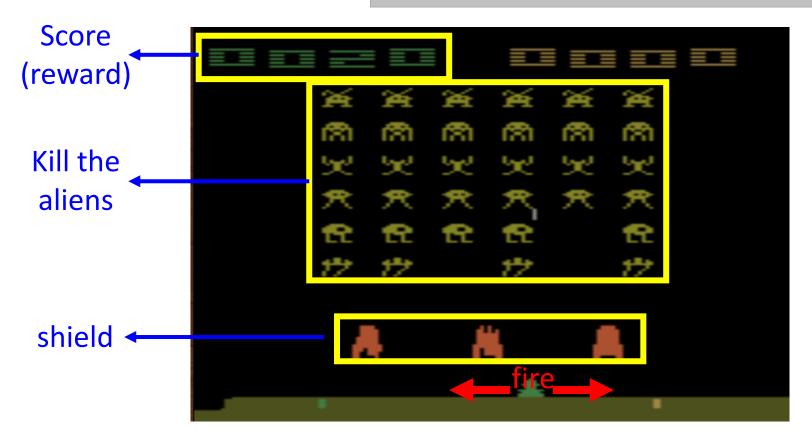
Machine Learning ≈ Looking for a Function



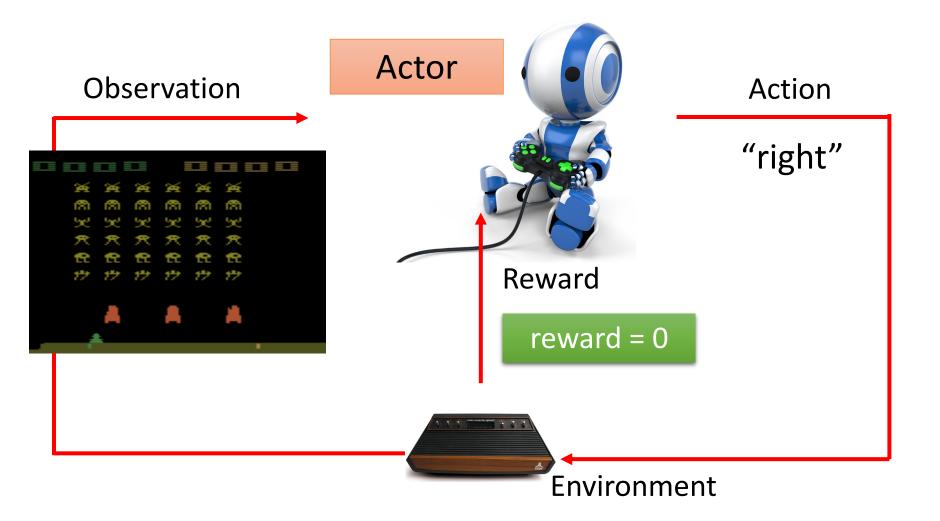
Example: Playing Video Game

Space invader

Termination: all the aliens are killed, or your spaceship is destroyed.

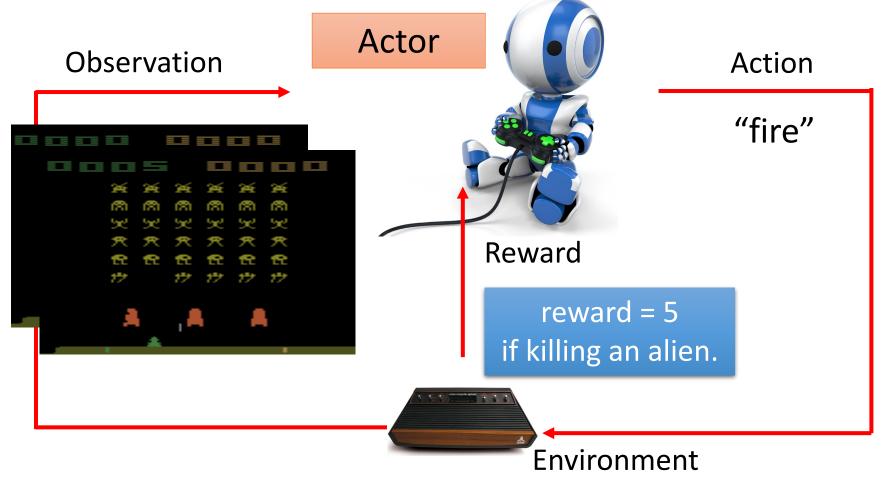


Example: Playing Video Game

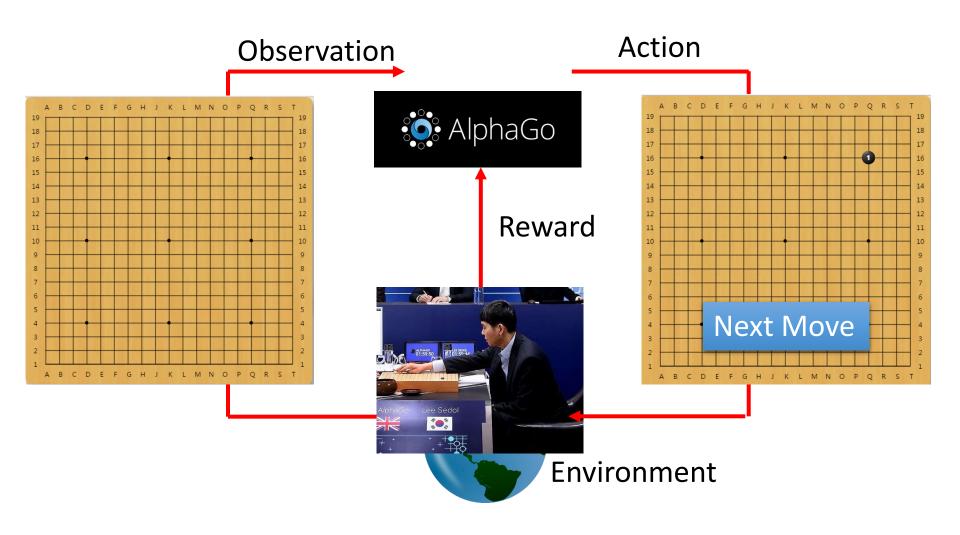


Example: Playing Video Game

Find an actor maximizing expected reward.

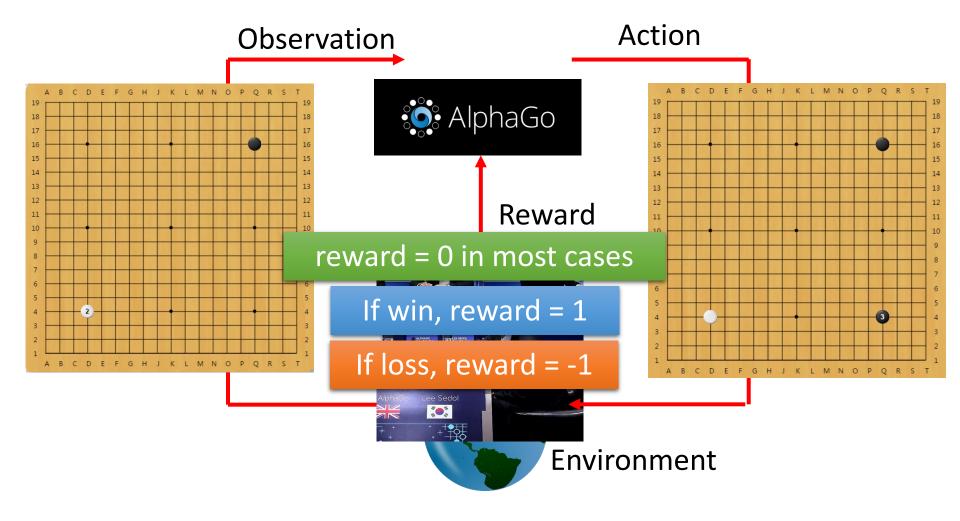


Example: Learning to play Go

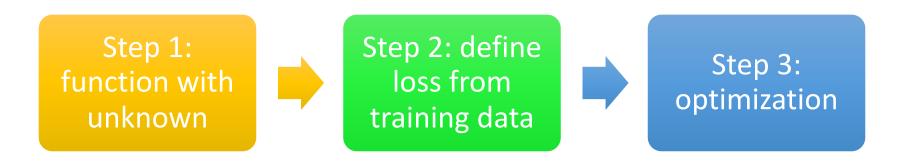


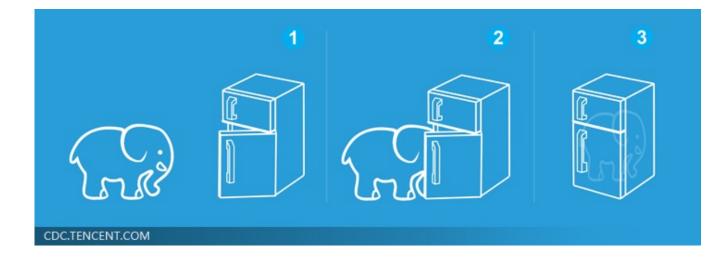
Example: Learning to play Go

Find an actor maximizing expected reward.

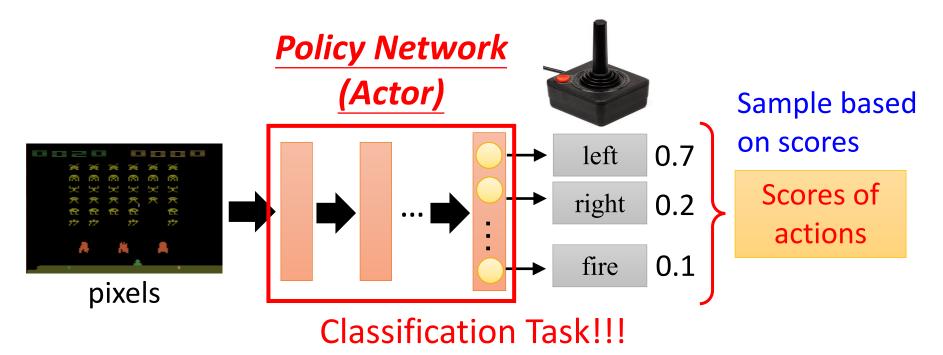


Machine Learning is so simple



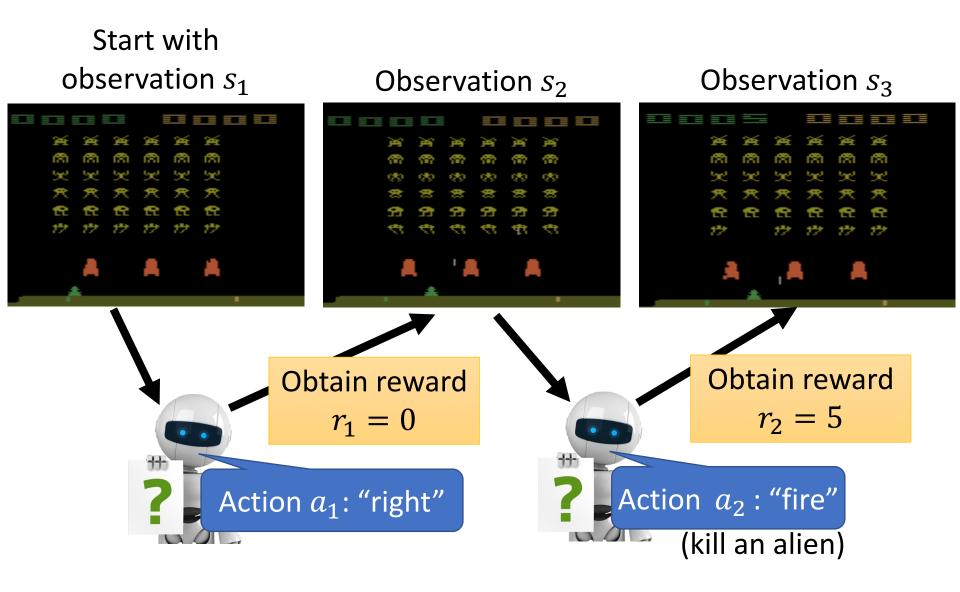


Step 1: Function with Unknown

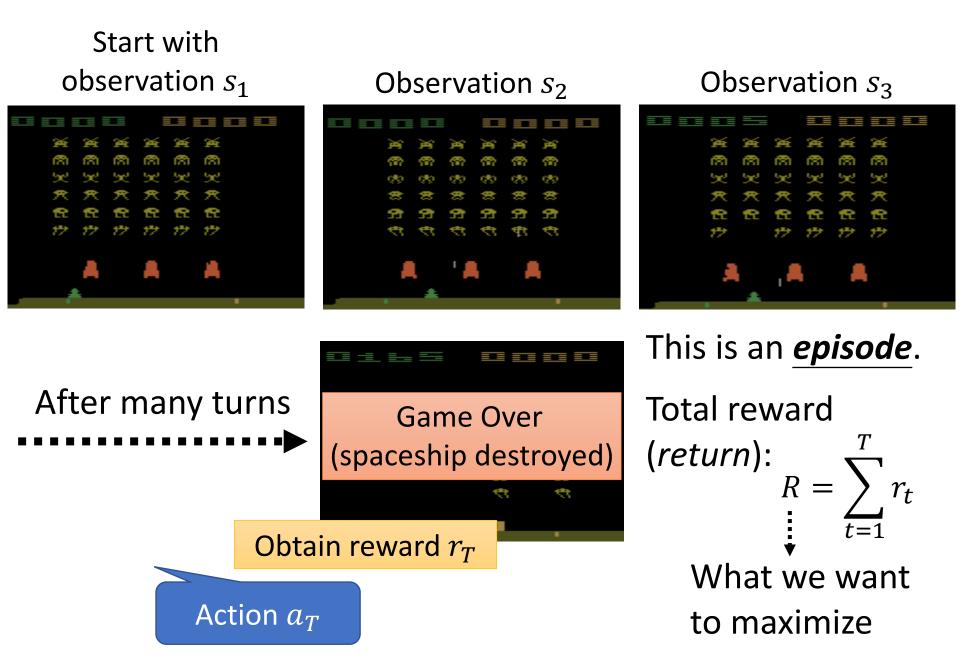


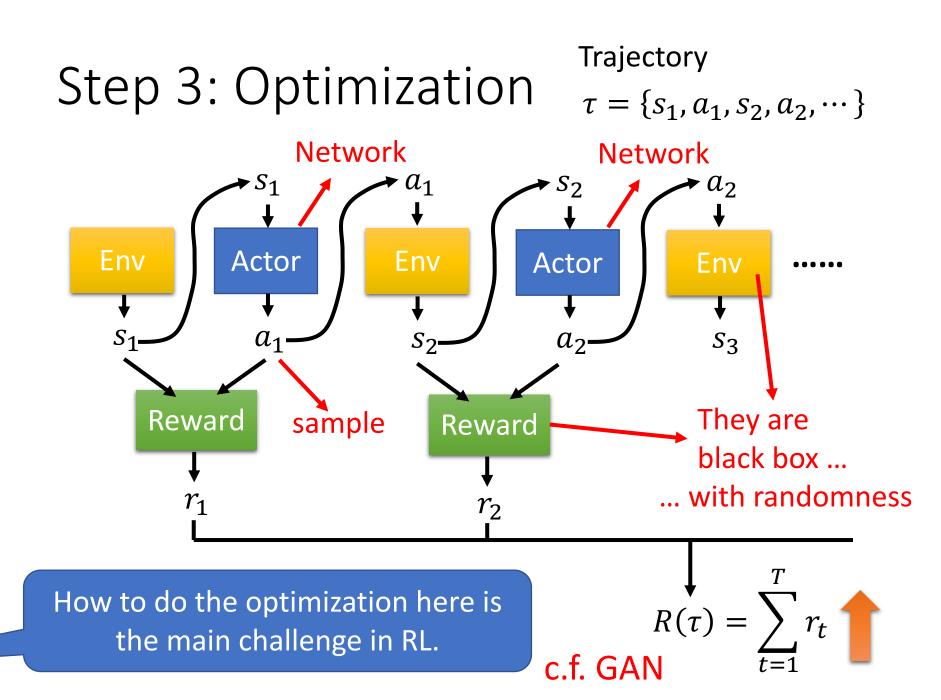
- Input of neural network: the observation of machine represented as a vector or a matrix
- Output neural network : each action corresponds to a neuron in output layer

Step 2: Define "Loss"



Step 2: Define "Loss"





Outline

Introduction of Q-Learning

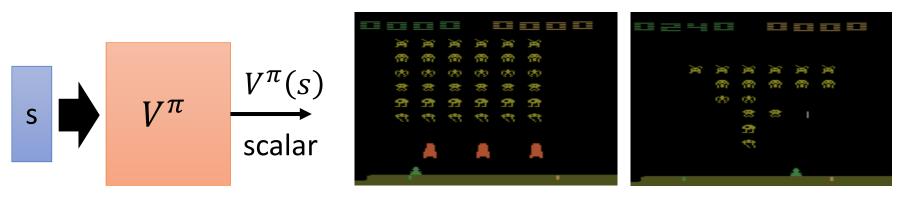
Tips of Q-Learning

Q-Learning for Continuous Actions

Critic

The output values of a critic depend on the actor evaluated.

- A critic does not directly determine the action.
- Given an actor π , it evaluates how good the actor is
- State value function $V^{\pi}(s)$
 - When using actor π , the *cumulated* reward expects to be obtained after visiting state s

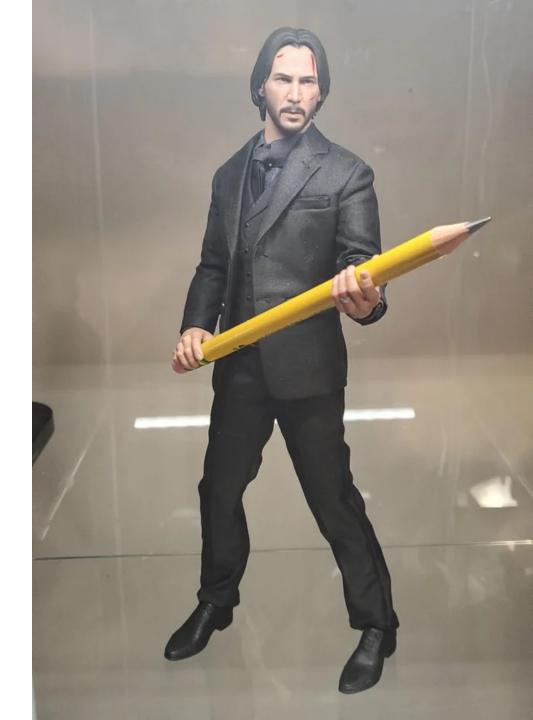


 $V^{\pi}(s)$ is large

 $V^{\pi}(s)$ is smaller

Critic

 $V^{you}(Pencil) = bad$ $V^{John Wick}(Pencil) = good$



How to estimate $V^{\pi}(s)$

Monte-Carlo (MC) based approach

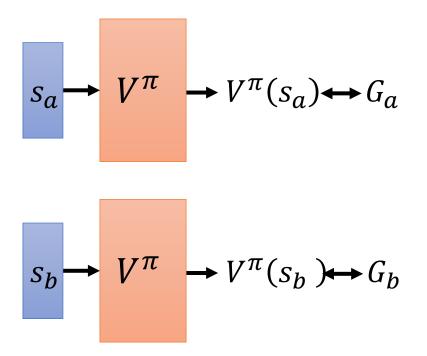
• The critic watches π playing the game

After seeing s_a ,

Until the end of the episode, the cumulated reward is G_a

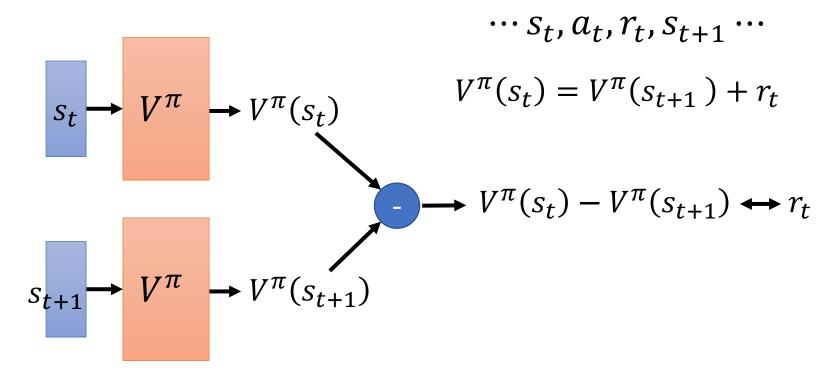
After seeing *s*_{*b*},

Until the end of the episode, the cumulated reward is G_b



How to estimate $V^{\pi}(s)$

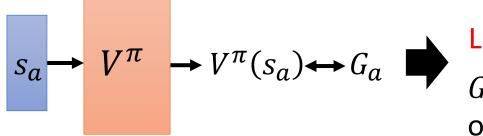
• Temporal-difference (TD) approach



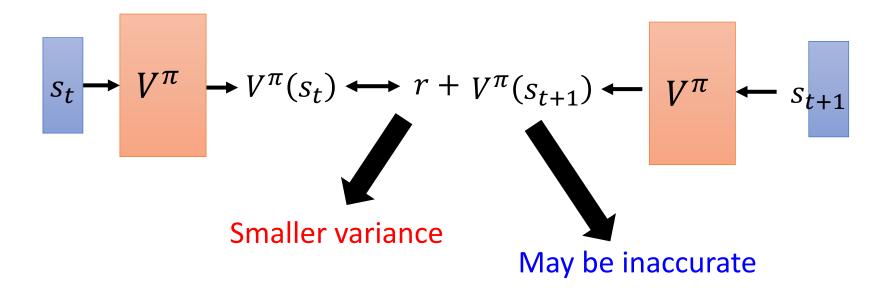
Some applications have very long episodes, so that delaying all learning until an episode's end is too slow.

$Var[kX] = k^2 Var[X]$

MC v.s. TD



Larger variance G_a is the summation of many steps



MC v.s. TD

[Sutton, v2, Example 6.4]

- The critic has the following 8 episodes
 - $s_a, r = 0, s_b, r = 0$, END
 - $s_b, r = 1$, END
 - $s_b, r = 0$, end

$$V^{\pi}(s_b) = 3/4$$

$$V^{\pi}(s_a) =? \quad 0? \quad 3/4?$$

Monte-Carlo: $V^{\pi}(s_a) = 0$

Temporal-difference:

$$V^{\pi}(s_a) = V^{\pi}(s_b) + r$$

3/4 3/4 0

(The actions are ignored here.)

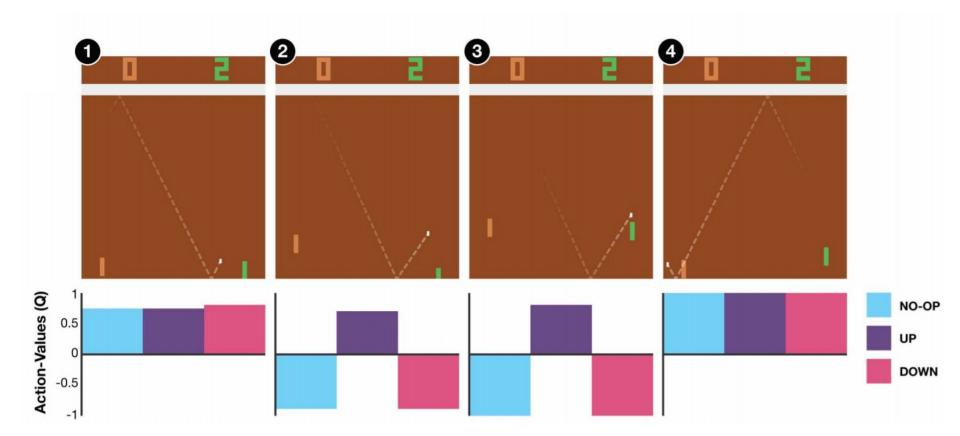
Another Critic

- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after taking a at state s

s
$$Q^{\pi}$$
 $Q^{\pi}(s,a)$ s $Q^{\pi}(s,a) = left$
a $Q^{\pi}(s,a)$ s Q^{π} $Q^{\pi}(s,a) = left$
 $Q^{\pi}(s,a) = right$
 $Q^{\pi}(s,a) = fire$

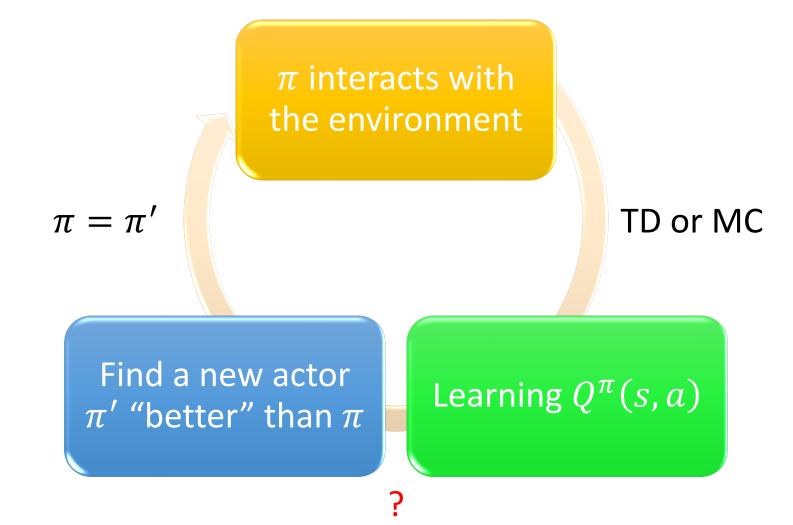
for discrete action only

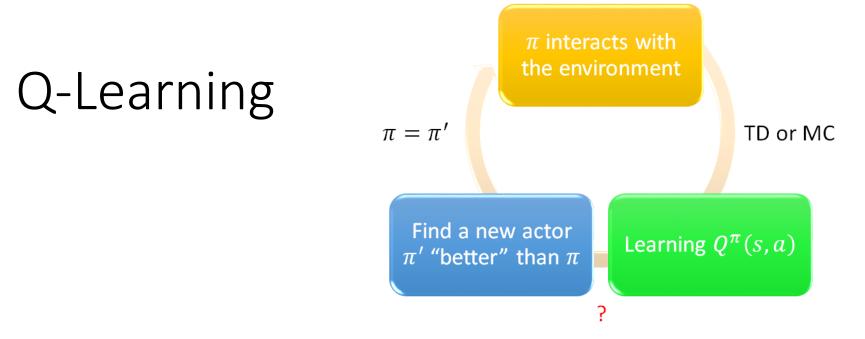
State-action value function



https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15N atureControlDeepRL.pdf

Another Way to use Critic: Q-Learning





- Given $Q^{\pi}(s, a)$, find a new actor π' "better" than π
 - "Better": $V^{\pi'}(s) \ge V^{\pi}(s)$, for all state s

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

π' does not have extra parameters. It depends on Q
 Not suitable for continuous action a (solve it later)

Q-Learning

$$\pi'(s) = \arg \max_{a} Q^{\pi}(s, a)$$

$$V^{\pi'}(s) \ge V^{\pi}(s), \text{ for all state } s$$

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$\leq \max_{a} Q^{\pi}(s, a) = Q^{\pi}(s, \pi'(s))$$

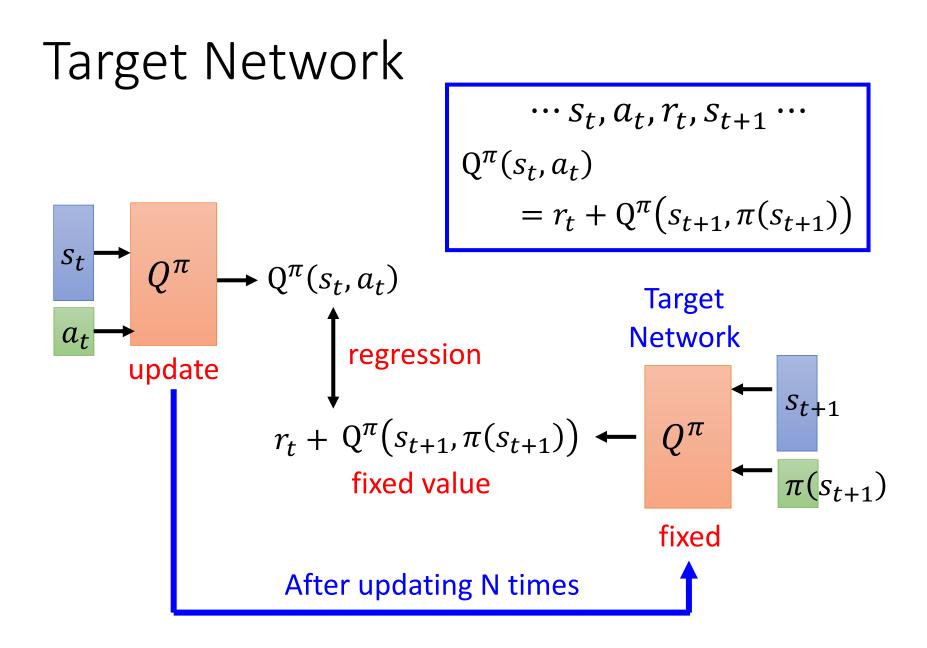
$$V^{\pi}(s) \le Q^{\pi}(s, \pi'(s))$$

$$= E[r_{t+1} + V^{\pi}(s_{t+1})|s_{t} = s, a_{t} = \pi'(s_{t})]$$

$$\leq E[r_{t+1} + Q^{\pi}(s_{t+1}, \pi'(s_{t+1}))|s_{t} = s, a_{t} = \pi'(s_{t})]$$

$$= E[r_{t+1} + r_{t+2} + V^{\pi}(s_{t+2})|...]$$

$$\leq E[r_{t+1} + r_{t+2} + Q^{\pi}(s_{t+2}, \pi'(s_{t+2}))|...] ... \le V^{\pi'}(s)$$



Exploration
$$s \leftarrow a_1 \quad Q(s,a) = 0$$
 Never explore
 $a_2 \quad Q(s,a) = 1$ Always sampled
 $a_3 \quad Q(s,a) = 0$ Never explore

• The policy is based on Q-function

 $a = \arg \max_{a} Q(s, a)$ This is not a good way for data collection.

Epsilon Greedy ε would decay during learning

$$a = \begin{cases} \arg \max_{a} Q(s, a), \\ random, \end{cases}$$

with probability $1 - \varepsilon$

otherwise

Boltzmann Exploration

$$P(a|s) = \frac{exp(Q(s,a))}{\sum_{a} exp(Q(s,a))}$$

Put the experience into buffer.

 π interacts with the environment

 $\begin{array}{c} \vdots \\ exp \\ exp \\ exp \\ s_t, a_t, r_t, s_{t+1} \\ exp \\ \vdots \end{array}$

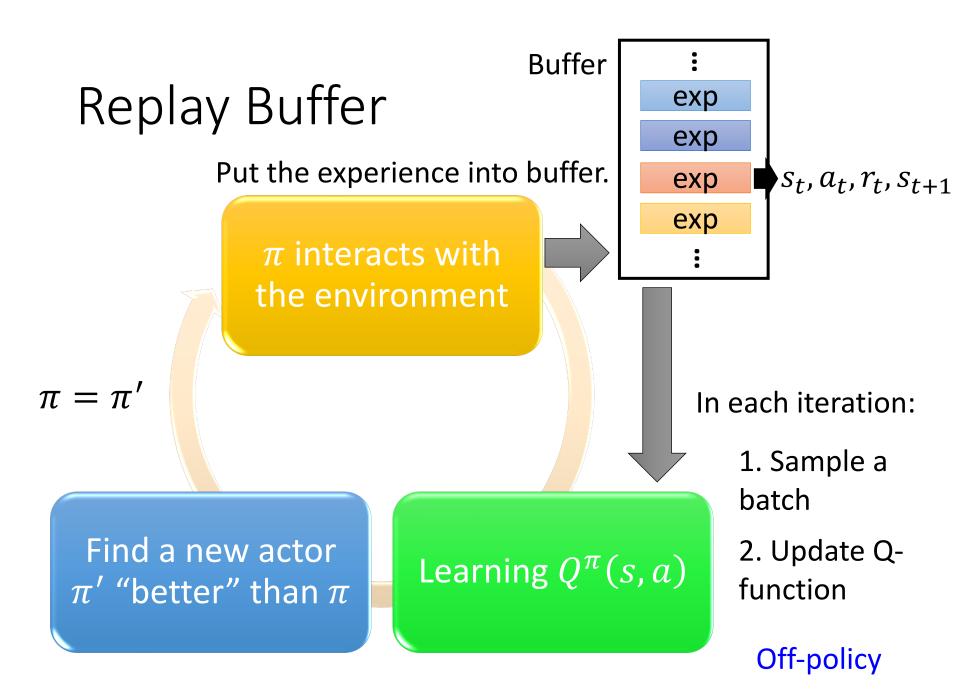
The experience in the buffer comes from different policies. Drop the old experience if the buffer is full.

Find a new actor π' "better" than π

 $\pi = \pi'$

Learning $Q^{\pi}(s, a)$

Buffer



Typical Q-Learning Algorithm

- Initialize Q-function Q, target Q-function $\hat{Q} = Q$
- In each episode
 - For each time step t
 - Given state s_t, take action a_t based on Q (epsilon greedy)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t , a_t , r_t , s_{t+1}) into buffer
 - Sample (s_i , a_i , r_i , s_{i+1}) from buffer (usually a batch)
 - Target $y = r_i + \max_a \hat{Q}(s_{i+1}, a)$
 - Update the parameters of Q to make Q(s_i, a_i) close to y (regression)
 - Every C steps reset $\hat{Q} = Q$

Outline

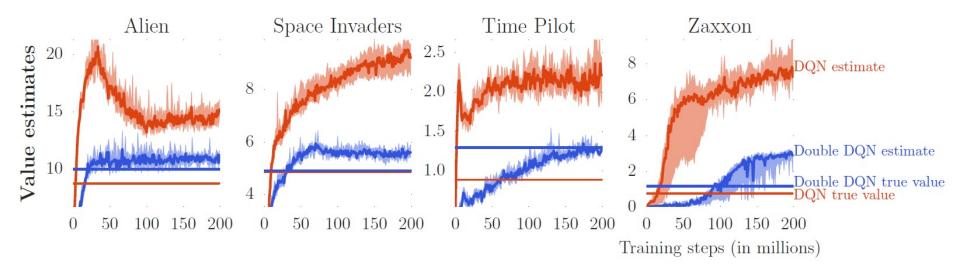
Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Double DQN

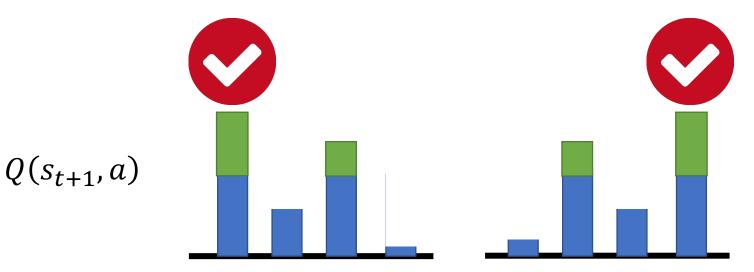
• Q value is usually over-estimated



Double DQN

• Q value is usually over estimate

 $Q(s_t, a_t) \longleftarrow r_t + \max_a Q(s_{t+1}, a)$ Tend to select the action that is over-estimated



Double DQN

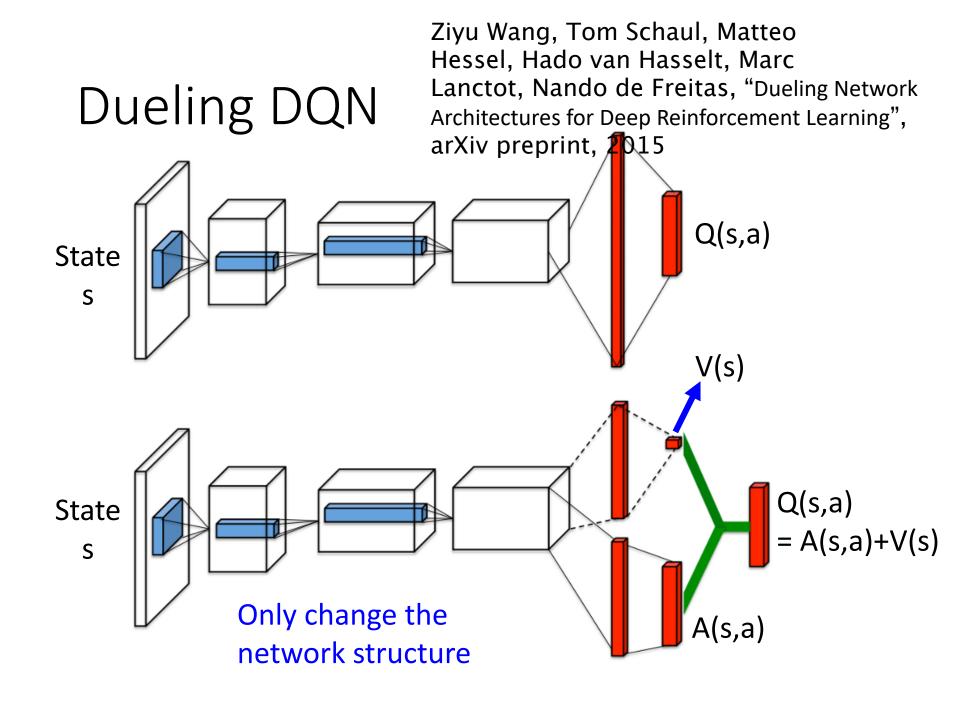
• Q value is usually over estimate

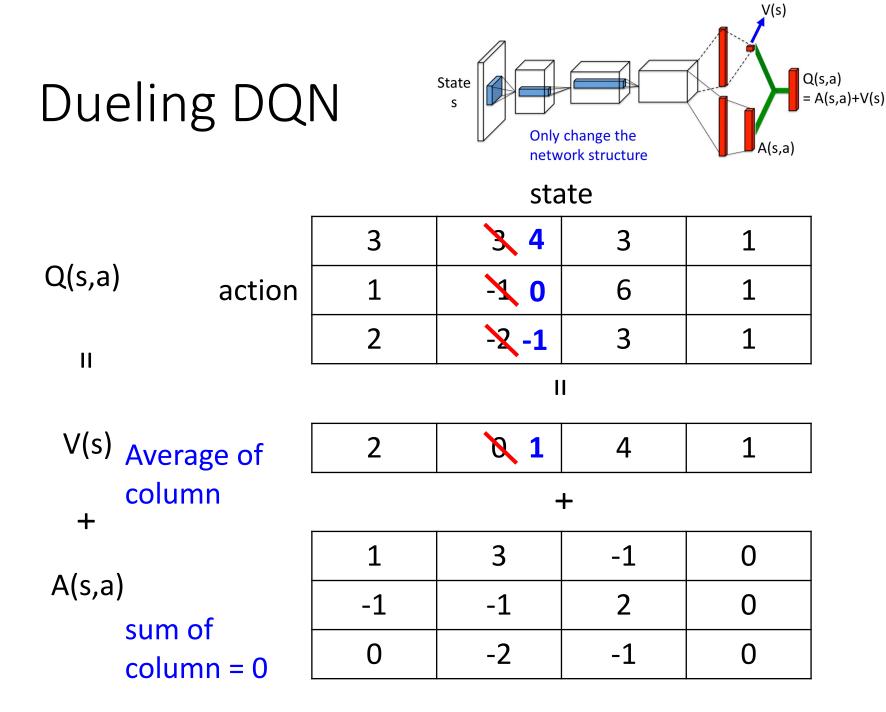
$$Q(s_t, a_t) \longleftarrow r_t + \max_a Q(s_{t+1}, a)$$

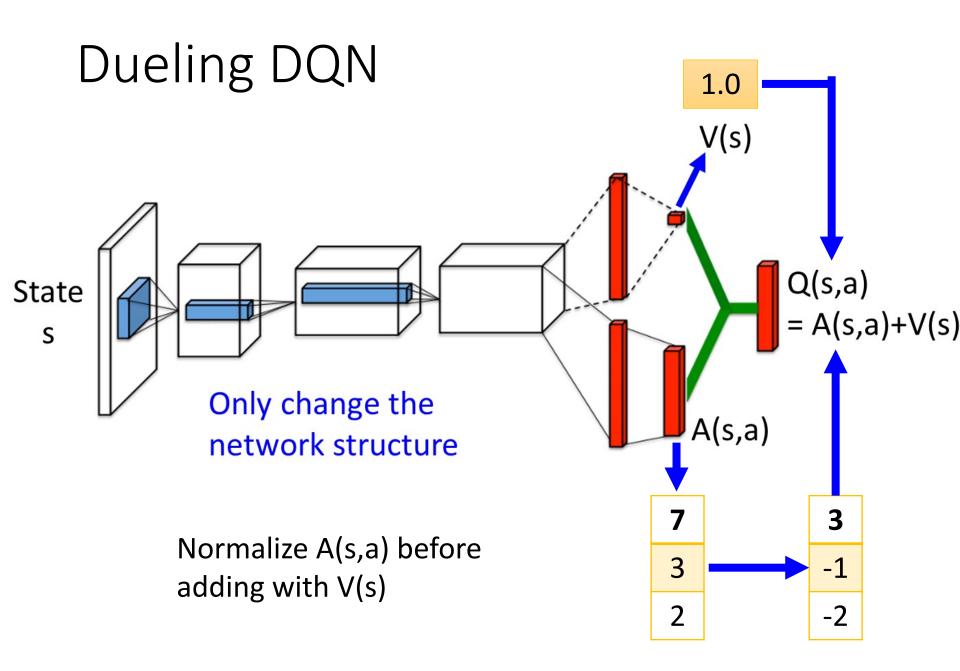
• Double DQN: two functions Q and Q' Target Network $Q(s_t, a_t) \longleftarrow r_t + Q' \left(s_{t+1}, \arg \max_a Q(s_{t+1}, a) \right)$

If Q over-estimate a, so it is selected. Q' would give it proper value. How about Q' overestimate? The action will not be selected by Q.

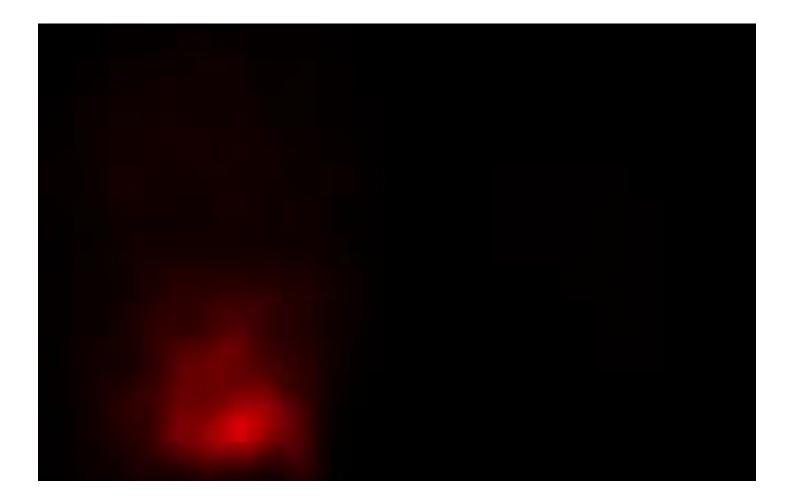
Hado V. Hasselt, "Double Q-learning", NIPS 2010 Hado van Hasselt, Arthur Guez, David Silver, "Deep Reinforcement Learning with Double Q-learning", AAAI 2016





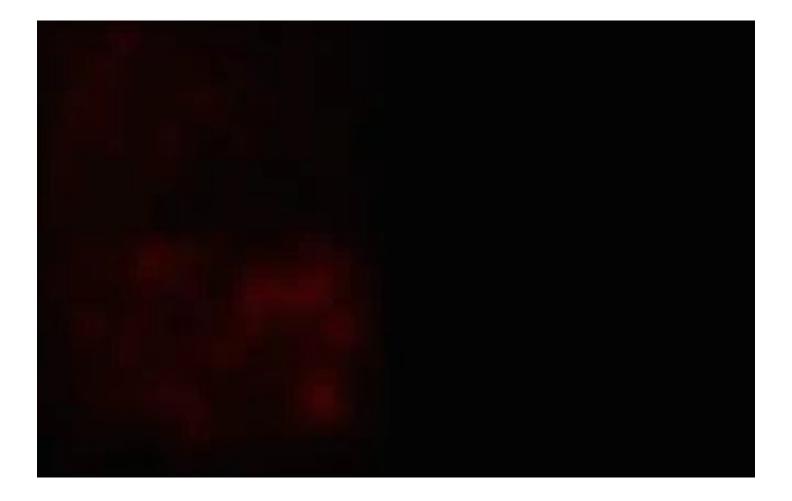


Dueling DQN - Visualization



(from the link of the original paper)

Dueling DQN - Visualization



(from the link of the original paper)

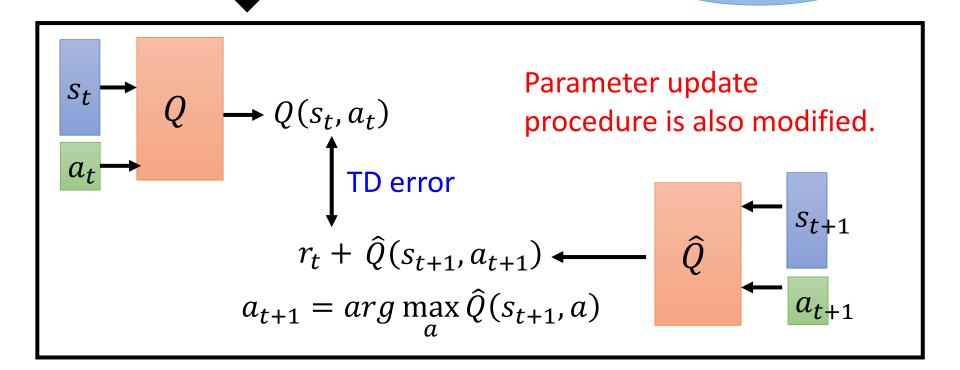
https://arxiv.org/abs/1511.05952?context=cs

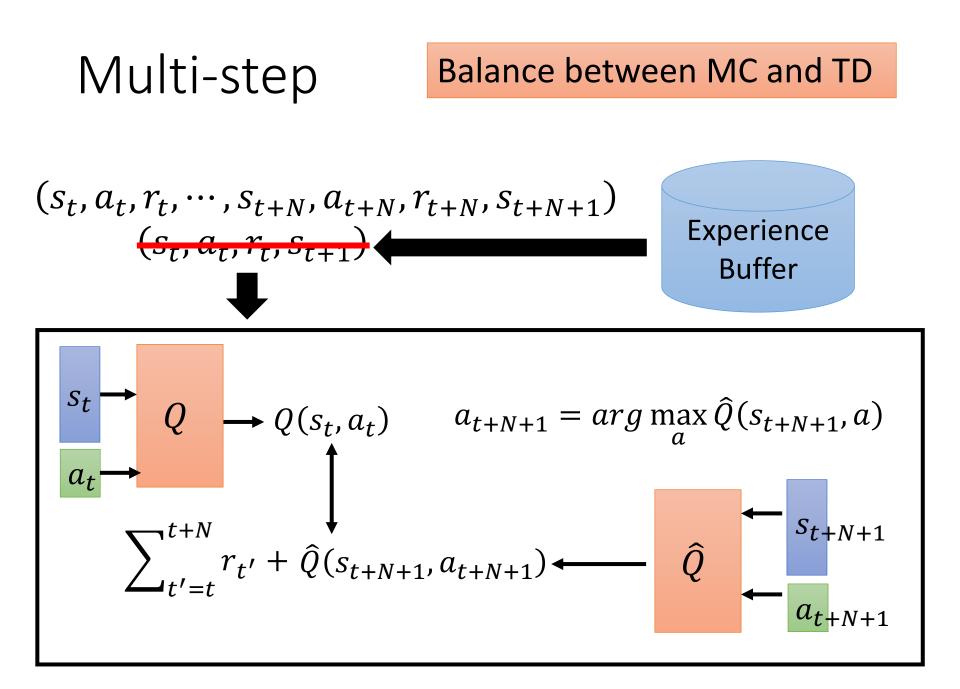
Prioritized Reply

 (s_t, a_t, r_t, s_{t+1})

The data with larger TD error in previous training has higher probability to be sampled.

Experience Buffer





Noisy Net

https://arxiv.org/abs/1706.01905 https://arxiv.org/abs/1706.10295

Noise on Action (Epsilon Greedy)

$$a = \begin{cases} \arg \max_{a} Q(s, a), & \text{with probability } 1 - \varepsilon \\ random, & \text{otherwise} \end{cases}$$

Noise on Parameters

Inject noise into the parameters of Q-function **at the beginning of each episode**

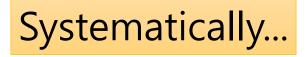
$$a = \arg\max_{a} \frac{\tilde{Q}}{Q}(s, a)$$

 $Q(s,a) \longrightarrow \tilde{Q}(s,a)$ Add noise

The noise would **NOT** change in an episode.

Noisy Net

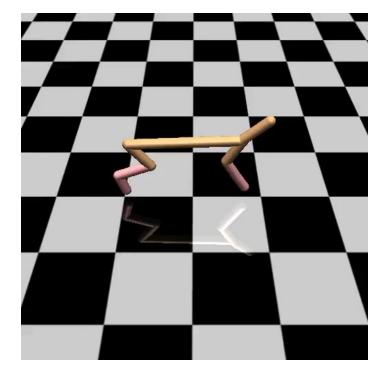
- Noise on Action
 - Given the same state, the agent may takes different actions. Random
 - No real policy works in this way
- Noise on Parameters
 - Given the same (similar) state, the agent takes the same action.
 - → State-dependent Exploration
 - Explore in a *consistent* way

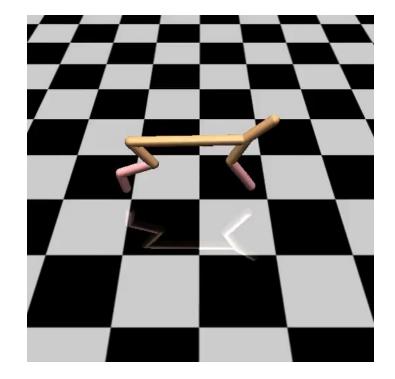


Testing

Demo

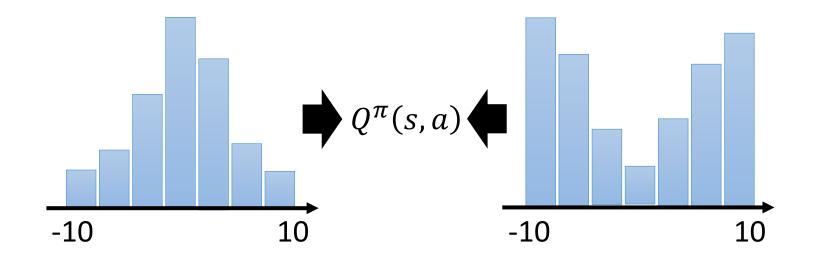
https://blog.openai.com/betterexploration-with-parameter-noise/





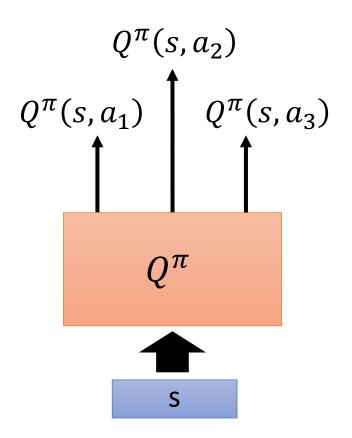
Distributional Q-function

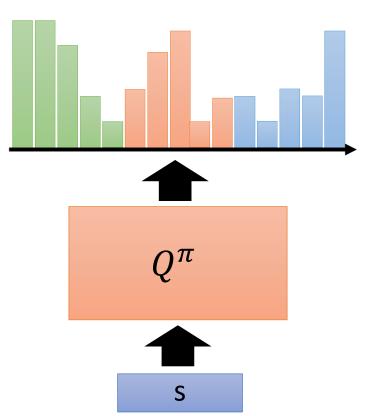
- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward <u>expects</u> to be obtained after seeing observation s and taking a



Different distributions can have the same values.

Distributional Q-function

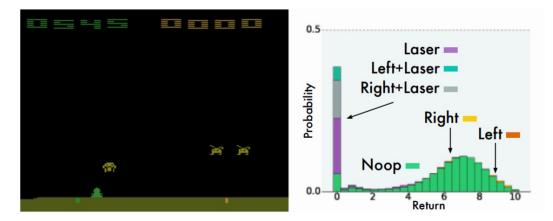


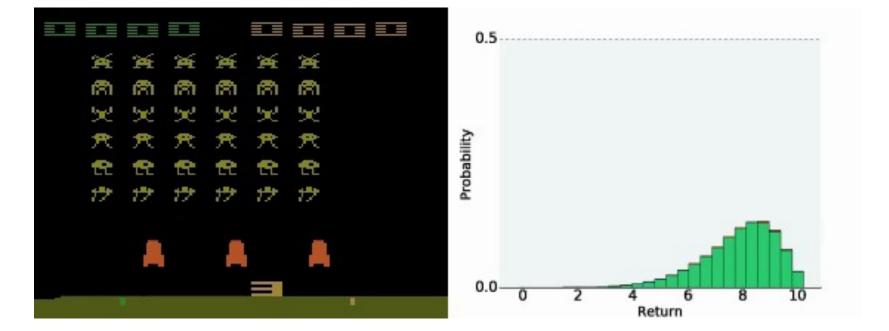


A network with 3 outputs

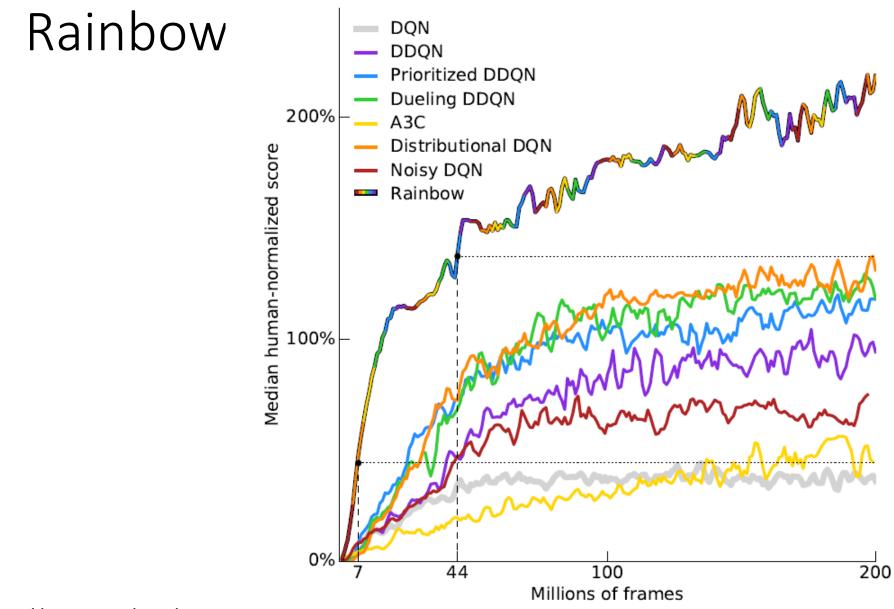
A network with 15 outputs (each action has 5 bins)

Demo

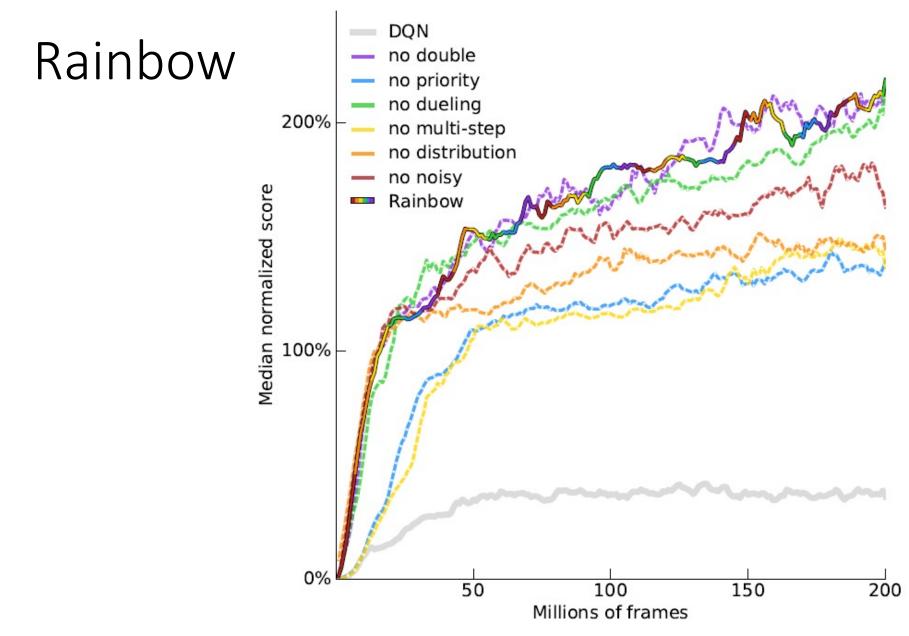




https://youtu.be/yFBwyPuO2Vg



https://arxiv.org/abs/1710.02298



https://arxiv.org/abs/1710.02298

Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Continuous Actions

• Action *a* is a *continuous vector*

$$a = \arg\max_{a} Q(s, a)$$

Solution 1

Sample a set of actions: $\{a_1, a_2, \dots, a_N\}$

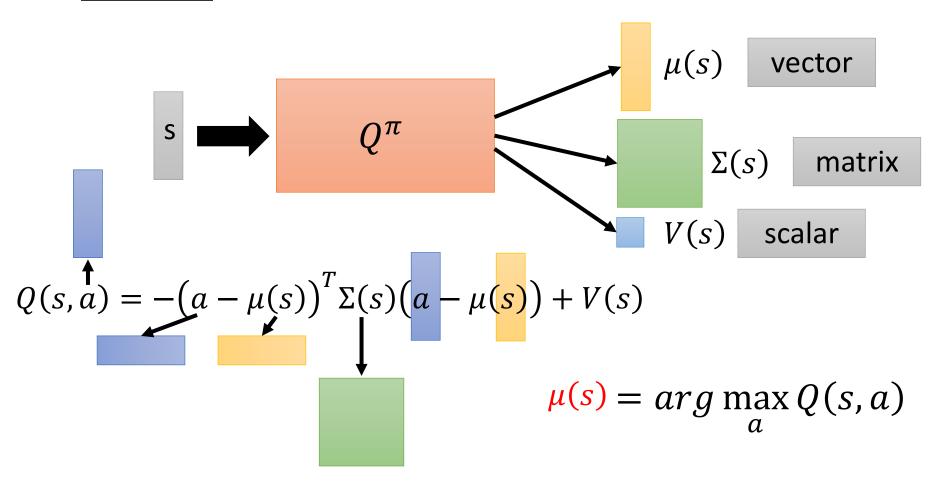
See which action can obtain the largest Q value

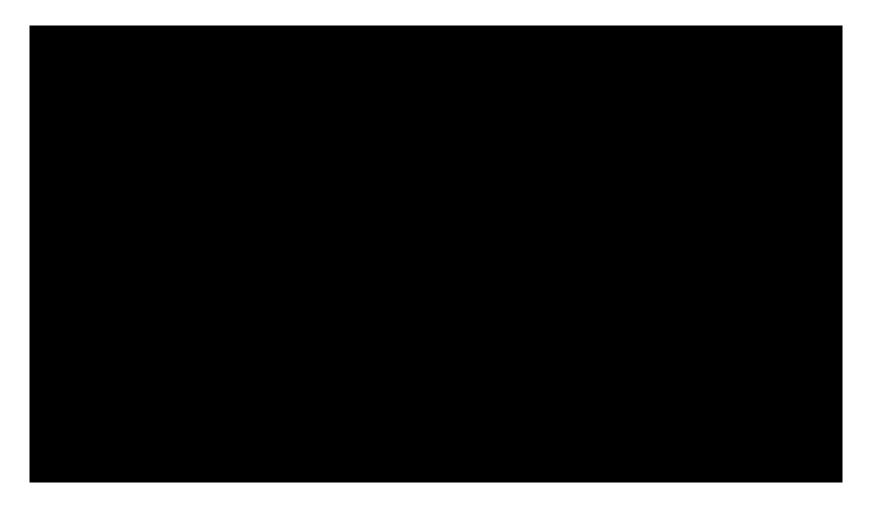
Solution 2

Using gradient ascent to solve the optimization problem.

Continuous Actions

Solution 3 Design a network to make the optimization easy.





https://www.youtube.com/watch?v=ZhsEKTo7V04

Continuous Actions

