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ABSTRACT
The spammers have been grossly detrimental since the inception of

Twitter social networks and keep polluting social environments by

hiding themselves among a large amount of normal users. In this

paper, we aim to address two challenges existing in the spammer de-

tection problem: 1) monitoring tweets that have a higher probability

of including spam messages; 2) providing an accurate solution for

spam classification. To address these two challenges, we first pro-

pose a pseudo-honeypot framework for efficient tweets monitoring

and collection. By taking advantage of users’ diversity and select-

ing normal users as the parasitic body, the pseudo-honeypot can

harness normal users with features having much more potentials of

attracting spammers. This lets the pseudo-honeypot collect tweets

that are far more likely to include spam messages. Furthermore,

we design a novel spam classification solution called TweetScore
by exploring both the intrinsic attributes’ and users’ relationships

in social networks. TweetScore quantifies such relationships into

a vector of numerical values to represent each tweet’s score, re-

flecting the associated user’s behaviors. The neural network is

then employed to take these vectors as input to classify spams

and spammers. Through extensive experiments, we demonstrate

the efficiency of the pseudo-honeypot system on spam monitoring

and the accuracy of TweetScore on spam classification. Specifically,

the spam and spammer ratios collected by our pseudo-honeypot

system are four times as much as those of a non pseudo-honeypot
counterpart while the TweetScore can achieve, on an average, 93.5%

accuracy, 93.71% precision, and 1.52% false positive in online spam

classification. The experimental results also show that the proposed

TweetScore exhibits significant performance improvement in terms

of spammers detection, when compared to the existing solutions.
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1 INTRODUCTION
The spammers have been the adversary to Twitter networks, per-

sistently polluting social networking environments. By imitating

normal user behaviors, spammers can create social relationships

with other users and send unsolicited messages or requests, includ-

ing the malware URLs, advertising, phishing, deceptive information,

and others. Such harmful messages or requests can spread into the

entire social network to target victims, thus significantly degrad-

ing the quality of user experience, stealing sensitive information,

causing economic loss, and even changing victim’s political opin-

ions [17, 30]. Therefore, both the research community and social

network providers are devoting considerable efforts to develop var-

ious solutions [5, 29, 31, 33, 34, 39] for spammer capturing so as to

achieve clean and healthy social environments.

Spammers hide among a large amount of normal users, thereby

difficult to be mined and classified. To capture spams or spammers,

there are two challenges that need to be addressed. First, as there

are billions of users exiting in Twitter networks and an average

of 8, 351 tweets are posting every second [26], it is unrealistic to

process the entire dataset of Twitter users and their tweets. The

most practical and efficient way is to collect a subset of tweets (or

users) that include a large portion of spam messages (or spammers).

But how to collect such a subset of the dataset, especially in a

real-time manner, is vastly challenging. Second, as the spammers’

behaviors and postings are hidden in a large number of benign

tweets, how to classify spam messages and associated spammers

efficiently from them while guaranteeing high accuracy remains an

open problem. Especially nowadays, the spammers keep sending
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non-spam messages or evolve with smart spammer techniques to

hide themselves.

Many research efforts have been devoted to analyzing the large

set of arbitrarily and blindly monitored tweets. These works [6, 8,

12, 20, 34] mainly focus on extracting features from users or tweets

and perform classification through learning-based classifiers based

on the disparity of attributes among spammers and normal users.

This line of solutions can classify spam messages or spammers

to some extent, but the efficiency and accuracy are limited. The

reason is that they worked on blindly collected tweets, where the

workload is extremely high and yet the ratios of captured spams

or spammers are relatively low. More importantly, such analytical

work extracts features from either users’ or tweets’ contents and

then employs the machine learning classifiers to train attributes

independently. However, the intrinsic relationships among users

as well as their attributes, that have rich information to reflect

spammer’s behaviors, are not explored yet.

On the other hand, the honeypot-based spammer capturingmeth-

ods [18, 19, 28, 36] have been promising for trapping spammers

by manually deploying honeypots with specific features meeting

spammer’s taste. As a result, analytical work on collected users

and tweets is significantly reduced. But such a method requires

lots of efforts on manual setup, which leads to high deployment

overhead. Moreover, some attributes are hard and even impossi-

ble to be equipped in artificially created accounts, e.g., creating a

honeypot account with a 3-year history. Thus, honeypot solutions

unavoidably have the essential drawbacks on deployment flexibility,

feature diversity, and network scalability. Besides, their analytical

work for spammer classification fails to consider intrinsic relation-

ships among users as well as their attributes. Another line of works

[4, 10, 13, 32, 35, 37, 38] have been proposed to analyze user rela-

tionships to explore spammer’s (called Sybil) behaviors. Through
modeling friend and follower relationships in social networks by a

graph, they relied on graph-based techniques to characterize users’

intrinsic relationships so as to classify each user as a Sybil node or
not. However, these works only focus on exploring users’ relation-

ships but the attributes’ relationships, which include much richer

information to reflect spammer’s behaviors, are still totally left out.

In this paper, we first propose the pseudo-honeypot as a novel

system framework for users monitoring and tweets collection, with

the aim to capture tweets that have much more potentials of includ-

ing spam messages. The proposed pseudo-honeypot framework

harnesses normal users as the parasitic bodywhile taking advantage

of those users’ diversity and utilizing their associated features as the

key resources to attract spammers. By selecting a set of users that

have the features of meeting spammer’s taste, the pseudo-honeypot

can monitor these users’ neighboring activities and collect tweets

that are more likely to be spam messages. Although the pseudo-

honeypot harnesses normal users, the monitoring activities can be

controlled in a way that is completely transparent to them and other

Twitter users, so as to comply with Twitter terms of the privacy

policy. Obviously, the pseudo-honeypot can perform similarly as

honeypot on trapping spammers while advancing it in multiple

perspectives. It has the salient advantages on deployment flexibility,

features variability, and network scalability. Besides, analyzing its

collected users and their posting tweets can be significantly quicker

while improving the captured spam or spammer ratios.

We then design a new solution, named TweetScore, to classify

spam messages over collected tweets. Our solution aims to analyze

both users and attributes relationships to reflect tweets’ charac-

teristics and then use these relationships to score tweets for spam

classification. In particular, we extract the “mention” relationships

among users and use them to model user’s relationships for con-

structing an Activity Graph. At each user, we identify the associated

attributes and leverage the Activity Graph to construct the attribute
relationship graph, called an Attribute Graph. With both graphs, we

develop a solution based on the “mention” frequency, UV matrix
decomposition, and PageRank algorithm [16] to predict and score at-

tribute relationships (i.e., edges) and attribute values (i.e., vertices).

Meanwhile, we use the Random Walk algorithm [11] to extract the

neighboring user relationships (i.e., walk l steps) and then represent
these relationships as attribute scores to quantify each tweet’s at-

tributes. In parallel, we also use the Random Walk results to model

the users’ relationships and quantify such relationships into two

vectors, i.e., sender vector and receiver vector. We consolidate the

attribute scores vector, sender vector, and receiver vector to form

a tweet’s score vector. Such a vector can reflect both the relevant

users’ relationships and attributes’ relationships of the associated

tweet. The neural network is then employed, taking the tweet score

vectors as the input, to further mine the deeper intrinsic attributes

and users relationships for training before deployed to classify each

tweet as a spam or non-spam.

The main contributions of our work are summarized as follows:

• We propose the pseudo-honeypot as a novel system frame-

work and advocate it for efficient spams monitoring in Twit-

ter social networks. The proposed pseudo-honeypot brings

salient advantages on development flexibility, features avail-

ability, and network scalability when compared to the tradi-

tional honeypot-based solutions. By leveraging the pseudo-

honeypot, we collect the set of tweets that have a much

higher probability of including both spams and spammers.

Experimental results confirm that spammer ratios captured

by pseudo-honeypot are four times as much as those of using

a non pseudo-honeypot counterpart.
• We design TweetScore as a novel spam classification solution

by analyzing both neighboring users and attributes rela-

tionships to explore the unique characteristics of spams and

spammers.With such relationships quantified by vectors, the

neural network model is employed to train the relationship

among neighboring users and attributes. This method out-

performs previous solutions where users and their attribute’s

relationships are rarely analyzed, despite such intrinsic rela-

tionships likely providemuch richer information that reflects

the disparity of spammer and non-spammer behaviors.

• We implement the proposed pseudo-honeypot system and

TweetScore solution for online spam detection in Twitter net-

work. By conducting extensive experiments, we demonstrate

that TweetScore can achieve, on an average, 93.5% accuracy,

93.71% precision, and 1.52% false positive in online spammer

detection. Moreover, we show the advantages of TweetScore
in terms of spammers detection over previous methods.



The remainder of this paper is organized as follows. In Section 2,

we discuss our problem and give the necessary definitions. Sec-

tion 3 presents the system design of pseudo-honeypot and Section 4

proposes a novel spam classification solution, i.e., TweetScore, and
describes its detailed designs. In Section 5, we implement both

the proposed pseudo-honeypot system and TweetScore solution
in Twitter networks while conducting extensive experiments to

demonstrate the performance of pseudo-honeypot network and the

accuracy of TweetScore solution on spams collection and classifica-

tion, respectively. We conclude our paper in Section 6.

2 PROBLEM STATEMENT AND DEFINITION
2.1 Problem Statement
This paper studies the spams gathering and spammers detection

problem in Twitter social networks. We aim to propose a new sys-

tem framework for monitoring and collecting tweets that have a

higher probability of containing spam messages, and then design

a novel solution to classify these tweets as spams or non-spams.

There are two challenges to be solved in this problem. First, since

the number of tweets postings in Twitter networks is enormous, it

is unrealistic to filter all tweets for spam detection due to excessive

workload. To address this challenge, we focus on the users that have

more potentials of attracting spammer’s interest and present a novel

framework, called pseudo-honeypot, to harness these normal users

while keeping transparency to them. This novel pseudo-honeypot

framework enables us to take advantage of users’ diversity (in-

cluding user types, behaviors, features, and others) and leverage

such diversity to attract spammers, without manually creating the

artificial honeypots but performing similarly to the honeypot. The

goal of pseudo-honeypot is to capture tweets that are more likely

to include spam messages instead of blindly collecting tweets for

classification.

On the other hand, since most of the tweets posted by spammers

are benign messages (for the covert purpose), it is challenging for

traditional attribute methods (i.e., extract independent attributes or

text mining) to find them. In this paper, we focus on the “mention”

activities included in each tweet and propose to analyze the rele-

vant user and attribute relationships associated with it. The reason

is that the “mention” activities include the most severe spammer

behaviors, which thus provide much valuable information to gar-

ner spammers. The “mention” relationships from the tweets will

be extracted to construct the Activity Graph and Attribute Graph,
respectively. Based on these two graphs, we will develop new so-

lutions to explore both tweet attributes’ and users’ relationships

while quantifying such relationships into a vector of numerical

values (i.e., score), so as to mine the discrepancy of spammer and

normal users. We introduce a novel solution called TweetScore to
implement such solution for spam classification.

As our solution depends on two types of graphs: Activity Graph
and Attribute Graph, we give the definitions of these two types of

graphs, which will be used later in our design.

2.2 Definition
2.2.1 User Activity Graph. The “mention” activities included in all

tweets are extracted to construct the user activity graph. We use a

directed graphG = (V ,E) to model mention activities among users,

A

C

D

B

D

Figure 1: Example of Activity Graph. A node denotes a user
and a directed edge denotes amention behavior from sender.

where each vertex i ∈ V in the graph represents one user and each

edge e(i, j) ∈ E represents the mention activity from users i to j,
i.e., i mentions j. For example, if Amentions B, C , and D, while B
and D, C and D mention each other, then the constructed activity

graph is shown in Figure 1, where A,B,C and D indicate the users

while the directed edges among them reflect the mention activities

among four users.

2.2.2 User Attribute Graph. Each user has a set of attributes. We

define the attribute graph as a directed graph Ḡ = (V̄ , Ē) to model

the attribute relationships among users. In Ḡ , each vertex represents
one unique attribute and each edge represents the relationship

between two attributes from two different users. The attribute

relationships can be constructed based on the Activity Graph G.
That is, for any two users i and j while each of them has a set of

attributes, if i mentions j, then we assume any one attribute from

user i has the directed relationships to any one attribute of user

j. Such directed relationships are expressed as the directed edges

in the graph Ḡ. In a special case, if one user mentions the other

user and both have one same attribute, there will be one directed

edge from this attribute to itself. To better understand the Attribute
Graph, we take the edge A → B in Figure 1 as an example. We

assume userA has the attributes of Friends 10, Followers 30, and Age
26 while user B has the attributes of Friends 10, Followers 100, and
Age 30. Then, the constructed Attribute Graph is shown in Figure 2,

where all attributes have directed edges based on A → B except

the attribute Friend 10 has directed edge to itself.

3 PSEUDO-HONEYPOT MONITORING
SYSTEM

In this section, we present our proposed pseudo-honeypot system

for efficient tweets monitoring. The goal of pseudo-honeypot is

to collect tweets that are more likely to be spam messages. As

discussed in Section 2, the pseudo-honeypots are constructed across

normal users, that are more vulnerable to be targeted by spammers,

to perform monitoring of activities or behaviors among these users

and their neighbors. The main challenges here include: i) How to

select such a set of users to meet the above criteria while obeying

the ethical consideration; ii) How to guarantee the effectiveness of

pseudo-honeypots.

3.1 Pseudo-honeypot Construction
User’s diversity serves as the key resources to construct pseudo-

honeypot nodes. Our goal is to select a set of features that have the

higher potentials of attracting spammers’ interests and then screen
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Figure 2: Example of Attribute Graph. Each node denotes an
attribute of one user. Sender’s attributes are fully connected
to receiver’s attributes.

a set of users accounts that possess these features as the pseudo-

honeypot nodes. Obviously, these user accounts are more likely to

serve as spammers’ target because they meet spammers’ taste. The

feature identifying procedure is one of the key steps for building

pseudo-honeypot systems. Our approach is to leverage the features

that have been well explored in previous research [2, 22] with high

efficiency in attracting spammers. We can identify a set of most

effective ones and utilize them in the pseudo-honeypot system for

screening users. After that, we take the reverse engineering strategy

to refine the top ones that aremore likely to attract spammers. These

refined attributes guide our design of a highly effective pseudo-

honeypot system.

After identifying a set of effective features, we screen the user

accounts that possess these features and use them to serve as the

pseudo-honeypot nodes, which surely can attract spammers with a

higher likelihood. Note here, the selected users may also be spam-

mers. By constructing pseudo-honeypot on this set of users, the

pseudo-honeypot can monitor their activities from nearby users

and collect their tweeting activities, thus yielding a much higher

probability of including spammer’s behaviors. Such a solution can

significantly reduce the spammer detection workload and increase

the probability of capturing spammers when comparing to the tra-

ditional spammer monitoring methods where spammer detection

is performed on the blindly monitored massive tweets.

Notably, even the pseudo-honeypot network takes normal users

as the parasitic body, its monitoring activities (i.e., data collection)

should be completely transparent to the normal users. That is, it

should be controlled to be unnoticeable to normal users and is

not allowed to perform any social interaction or interference to

Twitter users. Moreover, it is not allowed to dig the sensitive or

secret information and can only fetch the public information so

as to comply with the Twitter terms of the privacy policy. Such

functions are supported by the Twitter RESTful and streaming APIs.
By leveraging these APIs, pseudo-honeypot can monitor the users’

activities while maintaining transparency to them.

3.2 Online Pseudo-honeypot Monitoring
Since users and their neighbor’s activity patterns change over time,

the selected users may not always stay attractive to spammers

indefinitely. Besides, the spammers may keep changing their tar-

gets in order to attack more victims and prevent themselves from

being detected. To improve the performance of pseudo-honeypot

network, we enable pseudo-honeypot to drift across different sets

of users, where on each set of users, pseudo-honeypot stays only

for a short period of time and only when these users have adequate

activities. To express a period of time, we define the Prosperous
Period and Recession Period for selected users. The Prosperous Period
represents the time period that users post new tweets and bring

lots of mentions and reply activities in a certain time interval, while

Recession Period denotes the time period that users either do not

post new tweets, or post new tweets but bringing few mentions

or replies in a certain time interval. We let the pseudo-honeypot

to drift among different sets of users and always stay on the set of

users in the Prosperous Period to perform tweets monitoring.

4 TWEETSCORE
In this section, we present our novel solution, called TweetScore, for
efficient spam classification. At the core of TweetScore is to score

tweets by considering the relevant users while quantifying users

and their attribute relationships.

We start with an overview of TweetScore. Assume the pseudo-

honeypot collects a set of tweets, denoted as D. Our goal is to

classify each tweet in D as spam or non-spam. We extract the

“mention” activities among users as well as each user’s attributes to

construct the Activity Graph and Attribute Graph. For the Attribute
Graph, we can score the attribute relationships (i.e., each edge) based
on the mentioning frequency of the associated users. For attributes

that have no relationship in Attribute Graph, we predict their values
based on the scores of known attribute relationships. After that,

we customize the PageRank algorithm [16] into our design to score

the value of each attribute (i.e., vertex in the Attribute Graph). As a
result, each attribute has an associated value to reflect both attribute

and user relationships. On the other hand, we utilize the constructed

Activity Graph to perform the Random Walk algorithm [11] for

identifying the most relevant users (i.e., walk l steps) to this tweet.

Then, we can quantify the relevant attribute scores of this tweet by

using the start and end users (in the l steps) to evaluate attribute
values (from PageRank results). In parallel, we also use the Random
Walk results to model the users’ relationships while quantifying

such relationships into two vectors, sender vector and receiver

vector. We concatenate the attribute scores vector, sender vector,

and receiver vector into a single one to represent a tweet’s score

vector. Notably, such vector can reflect both the relevant users’

relationships and attributes’ relationships of the associated tweet.

In the end, we label a subset of tweets as the ground truth and

classify the remaining set of unlabeled tweets using the neural

network model.

Figure 3 shows the flowchart of our design. In the following, we

give the design details of each step in TweetScore.
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Figure 3: The flowchart of TweetScore.

4.1 Constructing Activity Graph
We extract user’smentioning activities fromD to construct directed

Activity Graph G as we discussed in Section 2.2. To model the

mention frequency and similarity of two users (i.e., vertices), we

define a weighted Activity Graph by giving a weight for each edge

ē(i, j) ∈ Ē, as follows:

w(i, j) = (1 + η · Sim(i, j))M(i, j), (1)

where Sim(i, j) reflects the consine similarity [27] of activities be-

tween users i and j , η is an adjustment coefficient, andM(i, j) counts
the frequency of mention activities from i to j. To calculate the co-
sine similarity, we refer Figure 1 and take the vertices A and D as

an example. We assume the mention frequency is 1 for each edge in

this figure. SinceAmentions B,C andD, we define ®A = [0, 1, 1, 1] as
the vector of mention frequency from A to A, B,C and D. Similarly,

we define ®D = [0, 1, 1, 0] as the vector of mention frequency from

D to A, B, C and D. Then, the cosine similarity of A and D can be

calculated as follows:

Sim(A,D) =
®A · ®D

∥ ®A∥·∥ ®D∥

=
< 0, 1, 1, 1 > · < 0, 1, 1, 0 >

∥ < 0, 1, 1, 1 >∥∥ < 0, 1, 1, 0 >∥
= 0.8165

4.2 Constructing Attribute Graph
We extract the attributes from user’s profile. This set of attributes

include number of friends, number of followers, number of
favorites, number of lists, account age, number of tweets,
number of retweets, number of mentions, number of hash-
tags, number ofURLs, number of characters in the tweet and
number of digits in the tweet. The previous research [19] has

shown that the attribute value of a spammer varies much dramati-

cally than a non-spammer, but it still stays within a relatively small

range. Thus, for these attributes whose values vary with time, we

define some continuous intervals for each attribute to capture such

fluctuation so as to construct the stable vertices in the Attribute
Graph. Thus, in the Attribute Graph, each vertex represents an inter-

val of one attribute. For ease of expression, we abbreviate attribute

interval as an attribute in the following steps, unless specified.

To construct the Attribute Graph Ḡ, we take the user relation-
ships (i.e., edges) from the Activity Graph to map the attribute

relationships as we have described in Section 2.2. In Ḡ , we quantify
the attribute relationships (i.e., assign a weight for each edge in

Ḡ) with numerical values by counting the mentions frequency of

the associated users. These numerical values represent the scores

of attribute relationships. That is, if there is a total number ofw1

mentions from users having attributes x to users having attributes

y, then the weight of this edge ē(x ,y) will bew1, which represents

the score of relationships between x and y. Obviously, we can only

get the attribute relationships for these edges that are existing in

Ḡ , but for these attributes whose associated users have no mention

activity, their relationships are unknown yet.

4.3 Scoring Attribute Relationships
We aim to score the relationships between any two attributes. This

can be done by prediction based on the known ones in Ḡ. We

transform the scored Ḡ into a matrix expression and denote it as

an Na by Na matrix A, where both the row and column represent

all vertices in Ḡ (i.e., attributes), Na represents the total number of

all attributes in Ḡ, and the entries in A represent the scores of the

attribute relationships. For these entries that do not have attribute

relationships in Ḡ, we leave it as blank. Our goal of this step is to

predict these blank entries in A.

Here, we employ the UV-Decomposition method, which has

been widely used in recommendation system [14] and aims to find

an Na bym matrix U and anm by Na matrix V such that P = UV
closely approximates to A for these non-blank entries, while giving

predicted values to those blank entries. The general idea of such de-

composition is shown below. To simplify our expression, we denote

the entries of U,V, P and A in row i and column j asui j ,vi j ,pi j , and
ai j , respectively. The entries in U and V are initialized into all ones

and then we vary each entry ui j or vi j to find a new value of ui j or
vi j that minimizes the Root-Mean-Squarre-Error (RMSE) between

A and P, i.e., min(ai j − pi j ). Then, we can claim the new P approxi-

mates to A. For example, we vary the entry ur s (i.e., consider it as
a variable) and want to find a new value for it, denoted as λ. This
affects only the i-th row in P, so each entry in the new r -th row in

P will be: pr j =
∑m
k=1

urkvk j =
∑m
k=1,k,s urkvk j + λvs j for each

column j where all urk and vk j are the current values in U and V.
Then, we employ the RMSE method to minimize the differentiation



of A and P, that is:

min

j<Q∑
j=1

(ar j − pr j ), (2)

where Q represents the set of column numbers whose correspond-

ing entries in A are blank.

To solve Eqn. (2), we take its derivative with respective to λ and

set its formula equal to 0, then we can get the value of λ as follows:

λ =

∑m
j=1

vs j (ar j −
∑m
k=1,k,s urkvk j )∑m

j=1
v2

s j
. (3)

Similarly, we can set the entry of vr s to a variable γ and take the

same method to get a new value for vr s , that is:

γ =

∑Na
i=1

uir (ais −
∑Na
k=1,k,r uikvks )∑Na

i=1
u2

ir

. (4)

We iteratively execute above operations and update one entry

in U or V each time until all ui j and vi j values are refreshed in

both U and V. The final P = UV will be the approximated matrix

to A without blank entries. Until now, we have scored all attribute

relationships while the Attribute Graph Ḡ can be reconstructed with

all attribute relationships.

4.4 Scoring Attributes using PageRank
Now we quantify each attribute’s score by using the attribute rela-

tionship scores. Our solution is based on the PageRank algorithm,

which has been implemented by Google to analyze the link rela-

tionships and rank hyperlinks using numerical values. It has the

property of ranking the important website with a higher value

while ranking a less important website with a lower value. This

property can be customized in our design to offer the attributes that

have different potentials of attracting spammer’s interest with various
scores. In particular, if an attribute has more potentials of attracting

spammer’s interest, it will be assigned with a higher value while

another attribute that has fewer potentials will be assigned with a

lower value. Here, we customize the PageRank algorithm into our

design and leverage it as the underlying algorithm to rank the at-

tributes in the Attribute Graph based on the attribute relationships.

To employ PageRank, we require to have an irreducible matrix.

The method proposed in [15] can be leveraged here to transform

the P into an irreducible matrix P̂. That is, if there exists some rows

having all entries with zero in P, we use the uniform vector
1

Na
eT

to replace each of these rows to get a new matrix P̄, where e is an

Na × 1 vector with all ones and Na is the total number of attributes,

respectively. Next, we transform P̄ into an irreducible matrix P̂ as

follows:

P̂ = κP̄ + (1 − κ)
eeT

Na
.

where κ is a parameter to adjust stochastic perturbation and is set

to be 0.85 as suggested in [15].

With the irreducible matrix P̂, we can leverage the PageRank
algorithm to calculate the scores of all attributes, which are denoted

by an 1×Na vector π . The vector π is initialized as π (0) = 1

Na
eT and

the Power Iteration Method [1] is employed to iteratively update

C

P

µ = q
x1

x2

x3

µ = z

µ = p

µ = r

Figure 4: Illustration of random walk method on directed
Activity graph. The selection of next node depends on the
structure of both previous node (i.e., P ) and current node (i.e.,
C).

this vector until it is converged. That is, we iteratively calculate

π (i+1)
by following:

π (i)P̂ = π (i+1), (5)

where π (i+1)
will be normalized by π (i+1)e = 1 in each iteration.

Once Eqn. (5) is converged, each entry of final converged vector π is

the rank of an attribute. In our context, the rank is also considered

as the attribute’s score. Such final PageRank vector is the same as

dominant left eigenvector of matrix P̂. Note here, the convergence
speed of this method depends on the subdominant eigenvaluewhich

is between 0 and 1. It typically takes no more than 100 iterations.

4.5 Scoring Tweets
After we quantified each attribute using a score, we can map the

score on the tweet to reflect its association to a user’s behaviors.

Here, we evaluate each tweet from most relevant user’s attributes

instead of only the one that posts this tweet, since the neighbor’s

behaviors are important factors to reflect a tweet’s attribute. The

Random Walk method is employed here to find the most relevant

users by walking l steps. We can use their attribute scores to repre-

sent each tweet as an evaluation vector. Such a vector of attribute

scores can reflect the trend of a tweet is spam or not to some extent.

We start from the users that are posting this tweet and perform

l steps on Activity Graph G to find the most relevant users. The

challenge here is how to decide which way to go at each step. We

define Pi, j as the probability of selecting the next node j from a

node i as follows:

Pi, j =

{ ϕi, j∑
X ∈Nr (i )(ϕ(i, j))

, k + 1 < l ;

0, otherwise;

(6)

where ϕi, j represents the unnormalized probability from i to j,
Nr (i) denotes all the neighborhoods of node j , and

∑
j ∈Nr (i)(ϕ(i, j))

is used to normalize the probability. The unnormalized transition

probability of random walk is calculated as follows:

ϕi, j = µi, j ·wi, j , (7)

wherewi, j is the edge weight in Activity graph G (in Eqn. (1)) and

µi, j is a weighted value showing the types of path that wewish to go.
As shown in Figure 4, at node C , there are four paths for selection
and the weight of each path is indicated. In our design, we aim to

find the next step users that have much more intimate relationships.



The assigned weights are used to measure the activity relationship

of a user with its neighbor users. In this figure, p measures the

mutual behaviors of two end users (between C and P ). That is, the
usersC and P have the mutual “mention” activities with each other.

Thus, these two users have close activity relationships with each

other. q measures the inward behavior of a user (from C to x1 but

can also reach to P ). In the figure, we can see P ,C and x1 stay in

a small group, thus C and x1 have a higher relevant relationship.

z measures the outward behavior to another user (from C to x3).

This reflects the user C’s proactive activity to its neighbor x3. In

social networks, most spammers’ activities are outgoing edge, i.e.,

mentioning others. r measures the self-directed activity, thus it

shows a weak relationship to its neighbors. Thus, we can assign

the weight values in the following order, i.e., p > q > z > r , to
represent the level of activity relationships of each type of link with

its neighbor
1
. Notably, this graph traversal strategy can balance

the extreme search strategies of Depth-first Search and Breadth-first
Search.

After performing the Random Walk, we obtain a path for each

tweet starting from the user that posts it and ending at a destination

node. For a tweet, we assume the start and end users are i and k ,
respectively.We use the attribute scores of users i and k to score this

tweet. We define an 1 by 2 ∗Nb vector Sw to represent the scores of

each attribute associated to users i and k ,where Nb represents the

attributes extracted from user i . Note here the column indicates the

attributes, not the attribute intervals. For user i or k , its attribute
values may fall into a specific interval, so we take the score of this

attribute interval as its attribute score. Then entries of Sw can be

calculated as follows:

S[j] =
i j + kj

2

, (8)

S[Nb + j] = i j − kj , (9)

for columns j (j ≤ Nb ) and Nb + j, respectively.
As a result, each tweet can be represented by a vector of scores,

which reflects the rich information of the associated behaviors.

4.6 Scoring Users’ Dependence Relationships
In addition to score attribute relationships, the random walk paths

are used to evaluate the user relationships in a network. For each

user ui , we define a high-dimensional vector variable vi ∈ R
N

to

represent its activities, where all elements in vector vi are indepen-
dent to each other. Such a vector is simply a mapping from a user

into a dense vector in RN . The advantage of such expansion is that

the high-dimensional vector can represent more fine-grained and

affluent features than a single value of a user [3]. We then quantify

a user’s activities with other users using a conditional probability

model. That is, the probability (denoted as p(uj |ui )) of a user ui has
some activities with another user uj can be defined as follows:

p(uj |ui ) =
evjvi∑

k ∈U evkvi
. (10)

The goal here is to find the optimal value v of all users that can

reflect neighboring users’ activities. Thus, we study the optimiza-

tion problem with the objective of maximizing the probability of

1
The optimal values of p, q, z and r can be identified through experimental test. Due

to the space limitation, we omit its discussion here to conserve space.

all users activating with their neighbors. Here, the neighboring

users represent the RandomWalk results of each user in the activity

graph. Then, this problem can be formulated as follows:

max

∑
u ∈U

log Pr (Nд(u)|u) ,
(11)

where Nд(u) represents the set of neighborhoods (the users in the

random walk path from Section 4.5) for a user u, and Pr repre-

sents the conditional probability for a user u activating with her

neighborhoods. As all elements in the high dimensional vector are

independent to each other, we have:

Pr (Nд(u)|u) =
∏

uj ∈Nд (u)

p(uj |u) .
(12)

Put Equations (10), (11), and (12) together, we have:

max

∑
u ∈U

log Pr (Nд(u)|u)

= max

∑
u ∈U

log

∏
uj ∈Nд (u)

p(uj |u)

= max

∑
u ∈U


∑

uj ∈Nд (u)

log evjv −
∑

uj ∈Nд (u)

log

∑
k ∈U

evkv


= max

∑
u ∈U


∑

uj ∈Nд (u)

vjv −
∑

uj ∈Nд (u)

log

∑
uk ∈U

evkv
 (13)

Note here, v , vj and vk are the high dimensional vectors of u,uj ,
and uk , respectively.

From Eqn. (13), we see the objective can be understood as maxi-

mizing the likelihoods of all users activating with their neighbor-

hoods (first term in the right hand) while minimizing the likelihoods

of users activating with their non-neighboring users (second term

in the right hand) at the same time. Thus, Eqn (13) can be approxi-

mated and simplified by removing the

∑
in the second term, i.e.,

OPT max

∑
u ∈U


∑

uk ∈Nд (u)

vkv − log

∑
uk ∈U

evkv
 (14)

It is extremely expensive to solve the above optimization prob-

lem for a large sized network as we need to consider all users in

the networks. Since the neighboring users take a small portion

while non-neighboring users take a large portion, we can employ

the Negative sampling [21] by just identifying a small Negative

sample set from a user µ’s non-neighboring users. Denote Ns (µ)
as the selected Negative sample set for a user µ, then OPT can be

reformulated into the following approximate expression.

max

∑
u ∈U


∑

uk ∈Nд (u)

vkv − log

∑
uk ∈Ns (u)

evkv
 (15)

This optimization problem can be solved by using the Stochastic

Gradient Ascend method [23]. Then, we can obtain the optimal

solutions of the dependence relationship vectors v for all users.
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Figure 5: The layer structure of Neural Network model.

4.7 Neural Network Model
Till now, we obtain the score of each tweet Sw, its sender’s depen-

dent relationship vector vs , and its receiver’s dependent feature

vector vr . These values represent a tweet’s characteristics and can

be consolidated to a new tweet score vector S.

S = concatenate(Sw,vs ,vr ) (16)

These three entries provide affluent information to reflect both

users’ and attributes’ relationships associated to a tweet. After we

obtain the consolidated tweet score vectors of all tweets, we can

use a small set of collected data in D as the training dataset and

label them as the ground truth. Then, we propose to employ the

neural network to have deeper training of these relationships.

The structure of the neural network that we employed is shown

as in Figure 5. The tweet score vector S will input to the first layer

and then pass to the hidden layer for training, which includes three

layers of fully connected Rectified Linear Units (ReLU). At the

output layer, we leverage the standard sigmoid function which is

commonly applied to the two-class logistic regression problem. In

the training phase, a cross-entropy loss is minimized with gradient

descent on the output of the sigmoid function. As we use the stan-
dard neural network model here, we omit the detailed description

to conserve space.

5 EXPERIMENTS
This section presents the implementation of our advocated pseudo-

honeypot system for tweet monitoring (in Section 3) and the use

of our TweetScore solution on spam classification (in Section 4).

Our goal is twofold. First, we show the effectiveness of the pseudo-

honeypot system in spams collection. By comparing with its coun-

terparts, i.e., non-pseudo-honeypot and honeypot systems, we il-

lustrate the advantages of pseudo-honeypot system on gathering

potential spams messages. Second, we evaluate the efficiency of

TweetScore in spam classification for comparison with the existing

works.

5.1 Implementation
In our implementation, we leverage the hashtag-based and trending-
based features, that have been widely adopted in previous research

[2, 22] and also have been demonstrated to effectively attract spam-

mers. The selected features serve as the criteria to identify candidate

users for our pseudo-honeypot nodes. Specifically, in hashtag-based
features, we identify a set of features that have more potentials in

attracting spammers, including entertainment, business, tech, edu-
cation, environment, social, astrology, and general. Then, we select
the top 10 hashtags (from [9]) under each hashtag-based category

while for each hashtag, we screen 10 users that possess such a

hashtag. For example, in the entertainment category, we obtain the

top 10 popular hashtags from [9] and select 10 user accounts for

each of them. Hence, under the entertainment category, we sample

a total of 100 pseudo-honeypot nodes out of the top 10 hashtags.

Likewise, we also take the top 10 popular hashtags for each of

the other hashtag categories and then screen 100 users to serve

as pseudo-honeypot nodes following the same way. There are a

total of 800 pseudo-honeypot nodes that are constructed under

hashtag-based features. In trending-based features, the following

three types of tweets are considered: (1) The tweets with topics of

trending up; (2) The tweet with topics of trending down; (3) The

tweets with popular topics. For the sake of simplicity, these three

types of tweets are abbreviated as trending-up, trending-down, and
trending-pop, respectively. We take the top 10 topics under each

type from [9] and sequentially screen 10 user accounts for each

topic to serve as the pseudo-honeypot nodes. Thus, there is a total

of 300 pseudo-honeypot nodes with the trending-based features.
In total, we have constructed a group of pseudo-honeypot net-

work with 1, 100 nodes. The time to create one such sized pseudo-

honeypot network is less than 1 minute. This significantly reduces

the deployment cost when compared to the manual construction

of traditional honeypots. Note here, the nodes in pseudo-honeypot

network are not immutable and are to shift to another group of

users after a specific time, ensuring the pseudo-honeypot network

to involve only those users in Prosperous Period. This design im-

proves the effectiveness of pseudo-honeypot network in terms of

spam messages gathering, as we discussed in Section 3.2. We imple-

ment the pseudo-honeypot network in Python with Tweepy library,

where the streaming API is employed to monitor users and retrieve

tweets. The TweetScore solution is run on a workstation with dual

Intel i5-6600K CPUs and 32 GB RAM.

We run our pseudo-honeypot system and perform spammer

detection on gathered data for a total of 700 hours. The time for the

pseudo-honeypot network to move to another new group of users

is set to be one hour. The selection of the new group of users to

serve as pseudo-honeypot nodes follows the same criteria as above.

Within the 700-hour experiments, there is a total of 1, 694, 018

tweets collected with these tweets involving a total of 69, 3358

unique user accounts.

Neural Network Setting. As discussed in Section 4.7, the neural

network model is employed to train the TweetScore vectors and then
classify the spam messages and spammers. The neural network

parameters are given in Table 1, where the first column represents

the layer types that have been shown in Figure 5 and the second

column represents the number of neurons that are used at each

layer.

In this neural network model, the connection between any two

neurons is controlled by a dropout layer with a dropout rate of

0.5. The binary Cross-Entropy is used to model the loss function as

follows.

Loss =
1

N

N∑
i=1

yi · log(p(yi )) + (1 − yi ) · log(1 − p(yi )), (17)



Table 1: The number of neurons at each layer in Neural Net-
work model.

Layer Type # of Neurons

Input 124

Fully Connected +ReLU 512

Fully Connected +ReLU 128

Fully Connected +ReLU 32

Softmax 2

where N denotes the total amount of input tweets, y denotes the

label (i.e., 1 for spam and 0 for non-spam), and p(y) is the predicted
probability of spams in the N tweets. To train the neural network,

we employ the Stochastic Gradient Descent method (SGD) as the

optimizer. The learning rate R is initialized as the value of 0.1 and

then is updated once for every 10 epochs. Thus, we have R ←

0.5 ⌊(1+
i
10
)⌋
, where i denotes the training epochs. Moreover, we

set the batch size as 100 and the total epoch count equal to 200,

respectively.

Solution Comparison. To show the performance of TweetScore,
we take the following two existing solutions for comparison.

• SybilSCAR [32]: SybilSCAR is a structure based method

to detect Sybil (i.e., fake) accounts in the social network. In

essence, it analyzes the graphic structure among users and

classifies them into the benign and Sybil regions. The random

walk and belief propagation methods are employed in the

classification in SybilSCAR. SybilSCAR iteratively calculates

the local rule:

p̂(t ) = q̂ + 2ŵAp̂(t−1), (18)

where p̂ and q̂ represent the residual prior probability vec-

tor and posterior probability vector respectively. ŵ is the

parameter determs homophily (edge with same type nodes)

strength between two nodes and A is an adjacency matrix of

the social graph. According to p̂(t ), a threshold (e.g., 0.5) is

set to distinguish the benign and Sybil users. This solution

can work on our collected dataset to classify spammers and

normal users, which are treated respectively as Sybil and

benign. But the attributes relationships among users are not

considered in this work.

• Chen6M [7]: Chen6M is a classification method, on extract-

ing statistic information from the user profiles and tweets. It

extracts a total of 12 features, listed in Table 2. After that, the

traditional machine learning classifier, i.e., Random Forest,

is employed for spam classification.

5.2 Accuracy of TweetScore
We take the first 100-hour data captured by pseudo-honeypot as

the training dataset. To label a reliable ground truth dataset, we

adopt the diversified approaches to ensure the labeled dataset cov-

ers a broad range of spams and spammers that can reflect their

characteristics of diversity. That is, we first check suspended ac-

counts to label a set of spams and spammers. Then, we employ the

clustering method to group tweets, where Minhash [25] is used to

check the similarity of tweets and then cluster them into different

Table 2: Extracted statistical features in [7].

No. Notation Description

1 Account age The days of the account since created

2 follower count The No. of followers of the account

3 following count The No. of friends of the account

4 favourites count The No, of favourites account received

5 lists count The No. of list the account added

6 tweets count The No. of tweets the account send

7 retweets count The No. of retweets the accout send

8 hashtags count The No. of hashtag in the tweet

9 mentions count The No. of mentions in the tweet

10 urls count The No. of urls in the tweet

11 char count The No. of characters in the tweet

12 digits count The No. of digits in the tweet.

Table 3: 10-fold cross-validation results.

Classifier Precision Accuracy Recall F1-macro

AB 0.855 0.872 0.797 0.831

GB 0.811 0.926 0.835 0.852

k-NN 0.760 0.901 0.722 0.820

SybilSCAR 0.661 0.454 0.436 0.445

Chen6M 0.976 0.955 0.852 0.927

TweetScore 0.989 0.967 0.914 0.946

groups, The spammers and spams in each group are labeled via

the following criteria: 1) if a user in one group is suspended by

Twitter, all users in this group are labeled as spammers; 2) if a tweet

in one group is labeled as spam, its users and all tweets in this

group are labeled as spammers and spams, respectively. After such

preprocessing, we can get a roughly labeled ground truth dataset.

Lastly, we perform manual checking (by inspecting account and

tweets text information) both in the labeled dataset and the remain-

ing unlabeled dataset to refine a reliable ground truth dataset. In

the first 100 hours data, we label a total of 15, 097 spammers and

219, 715 non-spams as our ground truth data.

10-fold cross-validation. We conduct the 10-fold cross validation

on the labeled ground truth dataset to evaluate the performance of

TweetScore, when compared to SybilSCAR Chen6M, and several tra-

ditional machine learning classifiers (i.e., k Nearest Neighbors (kNN),
Gradient Boosting (GB), and AdaBoost (AB)). Table 3 shows the de-
tailed accuracy, precision, recall, and F1-marco ratios of TweetScore
and different counterpart solutions. From this table, it is evidenced

that our TweetScore always outperforms other methods in all met-

rics. In particular, the precision, accuracy, recall, and F1-macro of

TweetScore are 98.9%, 96.7%, 91.4% and 94.6% respectively. These

results confirm the superior efficiency of TweetScore on spam clas-

sification.

Testing on new data. We take our 100-hour labeled ground truth

dataset as the training data and pick a 10-hour data from the re-

maining 600-hour dataset for testing to show the performance of

TweetScore, SybilSCAR, Chen6M, and Gradient Boosting (GB). We

again adopt the diversified approaches to label this 10-hour data
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Figure 6: The ROC curves of TweetScore with different ma-
chine learning classifiers.
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Figure 7: The accuracy, precision, and recall of TweetScore in
the online spam classification (600 hours).

for comparison. Figure 6 depicts the Receiver Operating Character-

istic (ROC) curves of TweetScore, SybilSCAR, and Chen6M, and GB.

The point on each curve represents the pair of TPR (true positive

rate) and FPR (false positive rate) for a given decision threshold. A

curve at the upper left represents that the solution has better per-

formance than the one at the lower right. This result demonstrates

the accuracy of TweetScore is highly competitive.

5.3 Online Learning and Testing Accuracy
We now illustrate the performance of TweetScore in online spam

detection for a total of 700 hours. As it is technically hard to label

all 700-hour dataset, we combine multiple state-of-the-art methods

[12, 24, 36] to label most confident spams and keep tracking Twitter

system to spot suspend accounts included in our test dataset. In

our tweets collection procedure, we implement the TweetScore,
SybilSCAR, and Chen6M complementingwith the pseudo-honeypot

to achieve online spam classification.

Accuracy of TweetScore in online spam classification. We let

the pseudo-honeypot to report the collected tweets every 10 hours.

In this experiment, we use the first 100 hours data as the training

dataset and employ the TweetScore to classify the tweets reported

later in every 10 hours. Figure 7 shows the accuracy, precision, and

false positive of TweetScore. From this figure, the average ratios of ac-

curacy, precision, and false positive of TweetScore are 93.50%, 93.71%,
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Figure 8: The AUC curves of TweetScore, SybilSCAR and
Chen6M on the 600-hour data.
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Figure 9: Time cost of TweetScore with various training and
test dataset sizes.

and 1.52%, respectively, within the 600 testing hours. These results

demonstrate high efficiency and accuracy of TweetScore in online

spam detection.

Comparison. We next compare the performance of TweetScore,
SybilSCAR and Chen6M on spam classification within the 600 test-

ing hours. The Area Under the Receiver Operating Characteristic

Curve (AUC) is used here to evaluate the classification results.

AUC can represent the probability that a classifier will rank ran-

domly selected spam tweet higher than a randomly selected non-

spam tweet. A higher AUC score means the better performance of

spam detection classifier. Figure 8 exhibits the AUC for TweetScore,
SybilSCAR and Chen6M, respectively. TweetScore is seen to out-

perform Chen6M and SybilSCAR. With the increasing of pseudo-

honeypot running time, AUC values for all these three solutions

keep decreasing. But the AUC curve of TweetScore decreases much

slower than that from SybilSCAR and Chen6M. This demonstrated

the advantage of TweetScore when compared to the existing solu-

tions in online spam classification.

Scalability of TweetScore. This experiment aims to evaluate the

scalability of TweetScore in terms of time cost by varying the sizes

of training and test datasets. We vary the training dataset sizes

from 100 hours, 200 hours, to 300 hours data, while the test dataset

sizes increment by 10 hours data each time. Figure 9 shows the time

cost of TweetScore with various training and test dataset sizes. With

the 700-hour data, we take the first 100, 200, and 300 hours as the
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Figure 10: The number of spams and the hit ratios captured
in the pseudo-honeypot network using different features.

training datasets, so the testing process starts after 100, 200 and 300

hours, respectively, in the x-axis of Figure 9.
All three curves in Figure 9 are seen to rise nearly linearly. We

find all these three curves are likely linearly increasing in Figure 9.

This implies that our TweetScore has almost linear complexity with

respect to the fixed training dataset size. From these three curves,

the running times are found to increase when training dataset sizes

grow (from 100 hours to 300 hours) even under the same test dataset

size. The reason is that the dominating time cost of TweetScore lies
in the neural network model training time, which requires longer

time to train larger datasets.

5.4 Performance of Pseudo-honeypot Systems
We illustrate the details of captured spams and spammers under

each of hashtag-based and trending-based features. To measure the

effectiveness of pseudo-honeypot on spams and spammers collec-

tion, we refer to the hit ratio as the ratio of captured spam (or

spammers) over collected tweets (or users accounts). Denote the

hit ratio of spams and of spammers by Hr and Ĥr , respectively.

Figure 10 depicts the number of spams and its hit ratio captured

by pseudo-honeypots under each feature. From this figure, we ob-

serve pseudo-honeypots captures more spams with trending-based
features than with hashtag-based features. Specifically, we collect
a total of 169, 121 spams using trending-based features and a total

of 83, 158 spams using hashtag-based features. The hit ratios of

the top three hashtag-based features are 22.41% (entertainment),
18.97% (technology), and 14.01% (general). On the other hand, ratios

of trending-pop, trending-up, and trending-down are 20.09%, 19.97%,

and 18.25%, respectively.

Figure 11 illustrates the number of spammers and the hit ratio

captured by pseudo-honeypots under each feature. We can see tech-
nology, entertainment, business, trending-down, general, and trending-
up to be the top 6 features that have the highest spammer hit ratios

of 11.61%, 9.03%, 8.26%, 6.34%, 6.31% and 6.29%, respectively. The

results from Figures 10 and 11 can guide us in the future design of

pseudo-honeypots by selecting features with high hit ratios.

From Figures 10 and 11, we select the features of the top 5 spam

hit ratios and the top 5 spammer hit ratios. These features are used
to sample a more effective pseudo-honeypot system. That is, the
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Figure 11: The number of spammers and the hit ratios cap-
tured in the pseudo-honeypot network using different fea-
tures.
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Figure 12: The comparison of spam hit ratio under pseudo-
honeypot and non pseudo-honeypot solutions within 300

hours of experiments.
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Figure 13: The comparison of spammer hit ratio under
pseudo-honeypot andnon pseudo-honeypot solutionswithin
300 hours of experiments.

pseudo-honeypot network randomly selects 300 users accounts,

with each one possessing at least one of these features. The pseudo-

honeypot network shift time is set to be 1 hour. For comparison, we

arbitrarily select 300 user accounts every hour to perform tweets

monitoring and execute this experiment with a total of 300 hours.

This experiment is called as the non pseudo-honeypots counterpart.



Comparison to non pseudo-honeypot system. Figures 12 and
13 show the comparison of Hr and Ĥr , respectively, for non pseudo-
honeypot and pseudo-honeypot systems. According to Figures 12

and 13, bothHr and Ĥr of the pseudo-honeypot solution are almost

four times more than those of non pseudo-honeypot. This demon-

strates the advantages of pseudo-honeypot in capturing tweets

(user accounts) that include a higher probability of spam messages

(spammers).

Comparison to honeypot-based solutions. A large-sized hon-

eypot systems is hard to be constructed, especially with some spe-

cific attributes.We select to compare the results of earlier prominent

studies, i.e., Stringhini [28], Lee [18], and Yang [36]. We find that

one pseudo-honeypot node can capture an average of 1.03 spam-

mers per hour, whereas each honeypot node in Stringhini [28], Lee

[18], and Yang [36] captures 0.0067, 0.12, 0.087, spammers per hour,

respectively. This demonstrates the advantage of pseudo-honeypot

system over the existing honeypot system in terms of spammers

capture efficiency.

6 CONCLUSION
This paper has explored the novel pseudo-honeypot framework

and TweetScore solution for efficient spam monitoring and classi-

fication in the Twitter network. The pseudo-honeypot network is

constructed over users with features that have much more poten-

tials of attracting spammers, thus significantly lifting the spam ratio

included in the collected tweets when compared to collecting tweets

blindly. Additionally, TweetScore allows us to explore the intrinsic at-
tribute relationships among neighboring users of respective tweets.

By scoring these relationships into a vector of numerical values,

we profile the users’ relationship and their tweets for better spam

classification. We implemented the pseudo-honeypot system in

Twitter network for tweet monitoring and collection, and employed

TweetScore to perform the spam classification based on 700-hour

collected data. The experiments have demonstrated that the pseudo-

honeypot yields four times and eleven times spammer capture ratios

when compared respectively with non pseudo-honeypot and the

traditional honeypot systems. The results confirm that TweetScore
achieves 93.50% accuracy, 93.71% precision, and 1.52% false positive

in online spam detection.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for their

fruitful comments. This researchwas supported in part by Louisiana

Board of Regents under Contract Number LEQSF(2018-21)-RD-A24.

REFERENCES
[1] Arasu, A., Novak, J., Tomkins, A., and Tomlin, J. Pagerank computation and

the structure of the web: Experiments and algorithms. In ACM International
World Wide Web Conference (WWW), Poster Track (2002), pp. 107–117.

[2] Benevenuto, F., Magno, G., Rodrigues, T., and Almeida, V. Detecting spam-

mers on twitter. In Collaboration, Electronic messaging, Anti-abuse and Spam
conference (CEAS) (2010).

[3] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. A neural probabilistic

language model. Journal of Machine Learning Research 3, Feb (2003), 1137–1155.
[4] Boshmaf, Y., Logothetis, D., Siganos, G., Lería, J., Lorenzo, J., Ripeanu, M.,

and Beznosov, K. Integro: Leveraging victim prediction for robust fake account

detection in osns. In Network and Distributed System Security Symposium (NDSS)
(2015), pp. 8–11.

[5] Castillo, C., Donato, D., Gionis, A., Murdock, V., and Silvestri, F. Know your

neighbors: Web spam detection using the web topology. In ACM SIGIR Conference
on Research and Development in Information Retrieval (2007), pp. 423–430.

[6] Chen, C., Wang, Y., Zhang, J., Xiang, Y., Zhou, W., and Min, G. Statistical

features-based real-time detection of drifted twitter spam. IEEE Transactions on
Information Forensics and Security 12, 4 (2017), 914–925.

[7] Chen, C., Zhang, J., Chen, X., Xiang, Y., and Zhou, W. 6 million spam tweets:

A large ground truth for timely twitter spam detection. In IEEE International
Conference on Communications (ICC) (2015), IEEE, pp. 7065–7070.

[8] Chen, W., Yeo, C. K., Lau, C. T., and Lee, B. S. A study on real-time low-quality

content detection on twitter from the users’ perspective. PloS One 12, 8 (2017).
[9] Corporation, L. Hashtag analytics for your brand, business, product, service,

event or blog. http://www.hashtags.org, 2018.

[10] Danezis, G., and Mittal, P. Sybilinfer: Detecting sybil nodes using social

networks. In Network and Distributed System Security Symposium (NDSS) (2009),
pp. 1–15.

[11] Grover, A., and Leskovec, J. node2vec: Scalable feature learning for networks. In

ACM SIGKDD International Conference on Knowledge Discovery and Data mining
(2016), pp. 855–864.

[12] Herzallah, W., Faris, H., and Adwan, O. Feature engineering for detecting

spammers on twitter: Modelling and analysis. Journal of Information Science 44,
2 (2018), 230–247.

[13] Jia, J., Wang, B., and Gong, N. Z. Random walk based fake account detec-

tion in online social networks. In Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN) (2017), pp. 273–284.

[14] Koren, Y., Bell, R., and Volinsky, C. Matrix factorization techniques for recom-

mender systems. Computer, 8 (2009), 30–37.
[15] Langville, A. N., andMeyer, C. D. Deeper inside pagerank. Internet Mathematics

1, 3 (2004), 335–380.
[16] Langville, A. N., and Meyer, C. D. Google’s PageRank and beyond: The science

of search engine rankings. Princeton University Press, 2011.

[17] Larsson, A. O., and Moe, H. Studying political microblogging: Twitter users in

the 2010 swedish election campaign. New Media & Society 14, 5 (2012), 729–747.
[18] Lee, K., Caverlee, J., and Webb, S. Uncovering social spammers: Social honey-

pots + machine learning. In ACM SIGIR Conference on Research and Development
in Information Retrieval (2010), pp. 435–442.

[19] Lee, K., Eoff, B. D., and Caverlee, J. Seven months with the devils: A long-term

study of content polluters on twitter. In ICWSM (2011).

[20] Mccord, M., and Chuah, M. Spam detection on twitter using traditional classi-

fiers. In International Conference on Autonomic and Trusted Computing (2011),

pp. 175–186.

[21] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed

representations of words and phrases and their compositionality. In Advances in
Neural Information Processing Systems (NIPS) (2013), pp. 3111–3119.

[22] Miller, Z., Dickinson, B., Deitrick, W., Hu, W., and Wang, A. H. Twitter

spammer detection using data stream clustering. Information Sciences 260 (2014),
64–73.

[23] Robbins, H., and Monro, S. A stochastic approximation method. In Herbert
Robbins Selected Papers. Springer, 1985, pp. 102–109.

[24] Sedhai, S., and Sun, A. Semi-supervised spam detection in twitter stream. IEEE
Transactions on Computational Social Systems 5, 1 (2018), 169–175.

[25] Shrivastava, A., and Li, P. In defense of minhash over simhash. In Artificial
Intelligence and Statistics (2014), pp. 886–894.

[26] Site, W. W. W. A. Twitter usage statistics. http://www.internetlivestats.com/

one-second/#tweets-band, 2019.

[27] Steinbach,M., Karypis, G., and Kumar, V. A comparison of document clustering

techniques. In KDD Workshop on Text Mining (2000), pp. 525–526.

[28] Stringhini, G., Kruegel, C., and Vigna, G. Detecting spammers on social

networks. In Annual Computer Security Applications Conference (ACSAC) (2010),
pp. 1–9.

[29] Thomas, K., Grier, C., Song, D., and Paxson, V. Suspended accounts in ret-

rospect: an analysis of twitter spam. In ACM SIGCOMM conference on Internet
measurement conference (2011), pp. 243–258.

[30] Thomas, K., McCoy, D., Grier, C., Kolcz, A., and Paxson, V. Trafficking fraud-

ulent accounts: The role of the underground market in twitter spam and abuse.

In USENIX Security Symposium (2013), pp. 195–210.

[31] Wang, A. H. Don’t follow me: Spam detection in twitter. In IEEE International
Conference on Security and Cryptography (SECRYPT) (2010), pp. 1–10.

[32] Wang, B., Zhang, L., and Gong, N. Z. Sybilscar: Sybil detection in online social

networks via local rule based propagation. In IEEE International Conference on
Computer Communications (INFOCOM) (2017), pp. 1–9.

[33] Wang, G., Wang, T., Zheng, H., and Zhao, B. Y. Man vs. machine: Practical

adversarial detection of malicious crowdsourcing workers. In USENIX Security
Symposium (2014), pp. 239–254.

[34] Wu, T., Liu, S., Zhang, J., and Xiang, Y. Twitter spam detection based on deep

learning. In ACM Australasian Computer Science Week Multiconference (2017),
pp. 3:1–3:8.

[35] Yang, C., Harkreader, R., Zhang, J., Shin, S., and Gu, G. Analyzing spammers’

http://www.hashtags.org
http://www.internetlivestats.com/one-second/#tweets-band
http://www.internetlivestats.com/one-second/#tweets-band


social networks for fun and profit: a case study of cyber criminal ecosystem

on twitter. In ACM International World Wide Web Conference (WWW) (2012),
pp. 71–80.

[36] Yang, C., Zhang, J., and Gu, G. A taste of tweets: reverse engineering twitter

spammers. In ACM Annual Computer Security Applications Conference (ACSAC)
(2014), pp. 86–95.

[37] Yu, H., Gibbons, P. B., Kaminsky, M., and Xiao, F. Sybillimit: A near-optimal so-

cial network defense against sybil attacks. IEEE/ACM Transactions on Networking

(ToN) 18, 3 (2010), 885–898.
[38] Yu, H., Kaminsky, M., Gibbons, P. B., and Flaxman, A. Sybilguard: defend-

ing against sybil attacks via social networks. In ACM SIGCOMM Computer
Communication Review (2006), vol. 36, pp. 267–278.

[39] Zhang, Y., Zhang, H., Yuan, X., and Tzeng, N.-F. Pseudo-honeypot: Toward effi-

cient and scalable spam sniffer. In 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) (2019).


	Abstract
	1 Introduction
	2 Problem Statement and Definition
	2.1 Problem Statement
	2.2 Definition

	3 Pseudo-honeypot Monitoring System
	3.1 Pseudo-honeypot Construction
	3.2 Online Pseudo-honeypot Monitoring

	4 TweetScore
	4.1 Constructing Activity Graph
	4.2 Constructing Attribute Graph
	4.3 Scoring Attribute Relationships
	4.4 Scoring Attributes using PageRank
	4.5 Scoring Tweets
	4.6 Scoring Users' Dependence Relationships
	4.7 Neural Network Model

	5 Experiments
	5.1 Implementation
	5.2 Accuracy of TweetScore
	5.3 Online Learning and Testing Accuracy
	5.4 Performance of Pseudo-honeypot Systems

	6 Conclusion
	References

