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Abstract—While considerable work has addressed the optimal
AoI under different circumstances in single-hop networks, the
exploration of AoI in multi-hop wireless networks is rarely
attempted. More importantly, the inherent relationships between
AoI and throughput are yet to be explored, especially in multi-
hop networks. This paper studies AoI in multi-hop wireless
networks and explores its potential relationships with throughput
for the very first time, particularly focusing on the impacts of
flexible routes on the two metrics, i.e., AoI and throughput.
By developing a rigorous mathematical model with interference,
channel allocation, link scheduling, and routing path selection
taken into consideration, we build the interrelation between
AoI and throughput in multi-hop networks. A multi-criteria
optimization problem is formulated with the goal of simulta-
neously minimizing AoI and maximizing network throughput.
By qualitatively analyzing their relationships, we exhibit that the
two metrics may conflict with each other, implying the optimal
solutions for the multi-criteria problem will include a set of
Pareto-optimal points rather than a single point existing in the
traditional optimization problem. We resort to a novel approach
by transforming the multi-criteria problem into a single objective
one so as to find the weakly Pareto-optimal points iteratively,
thereby allowing us to screen all Pareto-optimal points for the
solution. Through formal proof, our solution is demonstrated to
be able to identify all Pareto-optimal points and terminate in a
finite number of iterations. We conduct the simulation evaluation
to identify the optimal tradeoff points of AoI and throughput,
demonstrating that one performance metric may improve at the
expense of degrading the other, with the routing path found as
one of the key factors in determining such a tradeoff.

Index Terms—Age of Information, network throughput, multi-
hop wireless networks, pareto-optimal points

I. INTRODUCTION

Age-of-Information (AoI) [2], [3] has received growing
attention lately due to its prominent advantages of capturing
information updating timeliness over the traditional metric of
delay. Such a metric of capturing timely updates is deemed ab-
solutely essential for emerging applications in Cyber-Physical
Systems (CPS) and Internet of Things (IoT), critically im-
portant for punctual responses. Defined as the time elapsed
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since the generation time of the latest arrival packet at a
target destination node, AoI characterizes timely information
delivery at the destination, with [3] demonstrating the optimal
AoI to be significantly different from the minimized delay.
Hence, in contrast to the conventional metrics of delay and
throughput, which capture the effectiveness of data collection
and transmission for the overall networks (e.g., delay reflects
the mean transmission time of all packets), AoI aims to
quantify the time-critical updates at a receiver.

To date, AoI in single-hop network has been extensively
studied. Efforts have been put in pursuit of AoI optimization
by considering packet generation control [2], [3], [4], various
queue management mechanisms [5], [6], [7], and scheduling
policies [8], [9], [10], [11], [12]. In addition, the multi-
access techniques, including ALOHA and Round robin, are
considered in [13], [14] to bring AoI into realistic network
settings. Moreover, different network environments (e.g., with
constraints on interference [15], throughput [16], [17], [18],
and energy [19]) have been studied for AoI optimization under
certain constraints. However, the study of AoI in multi-hop
networks is rarely attempted although it has gained increasing
interests in the ad-hoc network systems, such as smart cities,
vehicular communications, weather forecasting, among others,
where emerging applications demand urgent responses while
the deployed sensors or monitors are scattered across a broad
area that is far away from the control center. Prior AoI studies
on multi-hop networks limit their scopes to either a special
network topology or an abstracted network setting [20], [21],
[22], [17], [1]. For example, [20] dealt with AoI in the gossip
network, whereas [21] considered a two-hop network for AoI
optimization. In [22], [17], AoI for multi-hop networks with
interference constraints was pursued, but its analytic models
simplify the network setting by pre-grouping interference-
free sets without taking into account the real-world factors
of channel allocation, routing, and others.

On the other hand, although AoI has its prominent advan-
tages in characterizing information freshness, the throughput
metric, which gauges the network transmission speed, cannot
be ignored in AoI exploration. For instance, in a large-scale
smart home network, plenty of diverse smart devices are
deployed to gather monitoring information. In such a network,
small AoI is crucial to meet timely responses for urgent events
and high throughput is also a necessary requirement to handle
massive data uploads, besides a higher throughput can support
less packet discarding in the waiting queue, which ensures data



collection completeness, so as to improve the network perfor-
mance. An immediate question arises here: Once AoI is opti-
mized at the receiver, will the network throughput be boosted
or hindered, especially in multi-hop wireless networks? While
[16], [17] have considered the throughput constraint in its
pursuit of AoI optimization, the inherent relationship between
AoI and throughput is unexplored therein. In [23], authors
have discussed the relationship between throughput and AoI
in the single-hop network. However, the landscape about
relationships between AoI and throughput in the multi-hop
network has not been systematically analyzed. Hence, the
other existing studies have failed to pursue the optimization of
AoI and throughput for exploring their inherent association,
especially in multi-hop networks with realistic factors such
as channel access modulation, interference, routing path, and
others, taking into consideration.

In this paper, we tackle AoI and throughput optimization
in routing-aware multi-hop networks for the first time, aiming
to explore the inherent relationships of the two metrics, i.e.,
boosting or hindering one versus the other. In particular, the
OFDM-based channel access modulation is employed for the
multi-hop networks, and flexible routing paths are considered
for each session. By addressing a series of challenges, we
characterize the channel allocation, link scheduling, packet
generation, and route selection to derive the AoI formula
in multi-hop wireless networks. A rigorous model is then
developed to interrelate AoI and throughput in multi-hop
networks. Given such a model, we formulate a multi-criteria
optimization problem with the objectives of simultaneously
minimizing AoI and maximizing throughput. By qualitatively
analyzing the interrelation of AoI and throughput, these two
performance metrics are found to potentially conflict with each
other, requiring us to pursue a set of performance tradeoff
points (i.e., Pareto-optimal points) to capture the scenarios that
AoI boosts or hinders throughput, and vice versa.

To solve the developed multi-criteria problem, which is in
the complex form of non-linear and non-convex programming,
we develop a novel algorithm for its efficient solution, with
an aim at determining all AoI and throughput tradeoff points,
i.e., Pareto-optimal points. Specifically, our developed algo-
rithm first transforms the multi-criteria problem into a single
objective one, so as to find the weakly Pareto-optimal points
iteratively and then to screen Pareto-optimal points for the
solution. Since each transformed single objective problem is
still in the non-linear form, another algorithm based on the
piece-wise linearization technique is then designed to refor-
mulate the non-linear terms approximately into a set of linear
segments so that such a single objective problem is solvable by
commercial software efficiently. In the end, we formally prove
that our developed algorithm can find all Pareto-optimal points
in a finite number of iterations. The significance of finding all
Pareto-optimal points is that it offers the entire landscape of
achievable throughput and AoI tradeoffs, exhibiting the global
view of the relationships between them. In contrast, a solution
to the traditional problem, such as maximizing throughput
under AoI constraints or minimizing AoI under throughput
constraints, only represents one point in our solutions. In
addition, under certain scenarios where one performance met-

ric (AoI or throughput) has a higher priority than the other
one, the network service provider can always find an optimal
tradeoff between AoI and throughput instantly from the set of
our Pareto-optimal points. Specifically, by assigning certain
weights (i.e., priorities) to AoI and throughput, we can simply
calculate the weighted values, by subtracting the weighted AoI
value from the weighted throughput value, with respect to all
Pareto-optimal points. The optimal point results from such
assigned weights that yield the maximum value.

We conduct simulation evaluation to quantify AoI and
throughput performance with the flexible routes. A case study
is presented to show how to find all Pareto-optimal points
iteratively and their associated routing paths. The global land-
scape of AoI and throughput relationships is also presented
in our case study, demonstrating that the improvement in one
metric is at the expense of deteriorating the other, with the
routing path identified as one of the key factors in dictating
such a tradeoff between optimal AoI and throughput. Besides,
the impacts of other network factors, such as session amounts,
interference strength, and routing schemes on such a tradeoff,
are also presented in our numerical results.

The remainder of this paper is organized as follows. In
Section II, we describe our problem and key challenges.
Section III presents the mathematical model and multi-criteria
problem formulation for AoI and throughput optimization
while Section IV conducts the theoretical analysis of the
interrelation of AoI and throughput. In Section V, we develop
a novel algorithm to solve the multi-criteria problem with
the aim of finding all AoI and throughput tradeoff points.
In Section VI, we develop an algorithm based on the piece-
wise linearization technique to transform nonlinear terms in
the derived single objective problem (given in Section V) into
a set of linear segments to make it solvable. In Section VII,
we present numerical results. Section VIII outlines related
work, Section IX discusses the limitations and future work,
and Section X concludes this paper.

II. PROBLEM DESCRIPTION

In wireless networks, both information timeliness and net-
work transmission speed are critical performance metrics, with
the former for measuring the information update timeliness
and the latter for gauging the network transmission speed. In
this paper, we conduct a systematic study of the information
update timeliness problem in multi-hop wireless networks and
explore its interrelation to the network throughput, aiming
to guide network service providers to make intelligent de-
cisions for efficient resource allocations via balancing mul-
tiple network performance goals. We consider a multi-hop
wireless network comprising of a set of nodes N . Suppose
all nodes employ the OFDM channel access modulation for
data transmission and a set of B orthogonal channels (with
equal bandwidth) are available for scheduling. There is a
set of sessions L in this network, where the source and
destination nodes of each session l ∈ L are denoted as
sl and dl, respectively. To transport data from a source to
its destination, the routing is not pre-fixed, so each session
has the flexibility to select the appropriate route so as to



meet its transmission needs. Each session corresponds to a
time-sensitive application, which requires updates from the
source to reach the destination in a timely manner. We take
the Age of Information (AoI) as the metric of choice to
measure information updating timeliness [2], [3]. Meanwhile,
the network throughput, which gauges the packet transmission
speed, is also an important criterion that should be taken into
consideration.

The goal of this paper is to explore the interrelation of AoI
and network throughput in OFDM-based multi-hop wireless
networks, particularly focusing on the impacts of flexible
routes on the two metrics. There are a number of challenges
yet to be addressed:
• In multi-hop networks, the packets from source nodes

need to traverse multiple relays to reach the destination,
making it necessary to model the consecutive transmis-
sion behaviors across the intermediate nodes to capture
the AoI variation. A new AoI formula has to be derived,
but such formula derivation is challenging, especially
when the routing paths (i.e., traversed intermediate nodes)
are unknown.

• We aim to jointly take such real-world factors as inter-
ference, channel allocation schemes, scheduling, routing
paths and others into considerations for characterizing
the AoI formula in multi-hop networks. Such a joint
consideration of real-world factors is rarely attempted
even in single hop networks, letting alone incorporating
them into the study of AoI optimization in multi-hop
networks.

• The intricate interrelation of AoI and throughput brings
more difficulty in our exploration. It is necessary yet
challenging to identify the polar relationships of these
two metrics (i.e., boosting or hindering them) and develop
the suitable solutions accordingly to find the optimal AoI
and throughput.

III. MATHEMATICAL MODELING AND PROBLEM
FORMULATION

In this section, we develop a mathematical model to char-
acterize the inherent relationships of AoI and throughput
in routing-aware multi-hop networks. To develop such a
model, the rigorous AoI formula will be derived in multi-hop
networks, capturing the impact of resource allocations, link
scheduling, interference and routing paths. A multi-criteria
problem is then formulated for simultaneously optimizing AoI
and throughput. The developed mathematical modeling and
problem formulation will address the challenges outlined in
the last section through a joint formulation.

A. Network Model
Let Ti denote the set of nodes in N located within a node

i’s transmission range. Since the route for each session is not
pre-fixed, i may choose any node in its transmission range
to relay its transported data. We let a binary variable nlij [b]
indicate if a link (i, j) is set up (i.e., activated) in a channel
b for a session l as follows: nlij [b] = 1 (i ∈ N , j ∈ Ti) if the
link (i, j) is activated in channel b ∈ B for a session l ∈ L;
= 0, otherwise.

1) Interference Constraints: Assume that all sessions are
unicast, i.e., node i can receive from or transmit to only one
node in a channel, we have:∑

l∈L

∑
j∈Ti

nlij [b] ≤ 1 , (i ∈ N , b ∈ B) . (1)

∑
l∈L

∑
k∈Ti

nlki[b] ≤ 1 , (i ∈ N , b ∈ B) . (2)

To account for half-duplex at each node, we have:∑
l∈L

nlij [b] +
∑
l∈L

nlki[b] ≤ 1 , (i ∈ N , j, k ∈ Ti, b ∈ B) . (3)

The above unicast and half-duplex constraints (1), (2), and (3)
can be replaced equivalently by the following constraint:∑
l∈L

∑
j∈Ti

nlij [b] +
∑
l∈L

∑
k∈Ti

nlki[b] ≤ 1 , (i ∈ N , b ∈ B) . (4)

To model interference among activated links, we consider
the interference avoidance among all links. We take into
account the protocol interference model, which has been
demonstrated to perform similarly as the physical interference
model when the interference range is properly set up [24],
in order to make our model more tractable. Denote Ii as the
set of nodes located within the interference range of a node
i ∈ N , we have:∑

l∈L

nlij [b] +
∑
l∈L

nlph[b] ≤ 1 , (5)

where i ∈ Tj , p ∈ Ij , h ∈ Tp, j ∈ N , j 6= h, and b ∈ B. This
means if a node j is receiving on channel b, it shall not be
interfered on the same channel by an unintended transmitter
p that locates within j’s interference range.

2) Link Activation Frequency: Let f lij denote the activation
frequency, which indicates the number of channels used to
transmit packets of a link (i, j) for session l. We have:

f lij =
∑
b∈B

nlij [b] , (i ∈ N , l ∈ L, j ∈ Ti) . (6)

Let binary variable zlij represent if a link (i, j) is set up for
session l, yielding: zlij = 1 if f lij ≥ 1; = 0, otherwise. This
means if a link (i, j) is set up only if the activation frequency
of this link for session l is no less than 1. This statement can
be reformulated mathematically into the following forms:

f lij ≥ zlij , (1− zlij)f lij < 1 . (7)

3) Routing Constraints: Suppose there is only one path for
each session and the paths from different sessions can intersect
at some nodes. To consider the network connectivity of each
session and avoid heavy congestion among different sessions,
we assume no multiple paths, share the same link. The routing
path for each session l ∈ L is flexible and is considered as an
optimization variable, we have:
• If node i is the source of a session l, we have:∑

j∈Ti

zlij = 1 , (i = sl) . (8)



• If node i is an intermediate node for a session l, we have:∑
j∈Ti,j 6=sl

zlij =
∑

k∈Ti,k 6=dl

zlki , (i 6= sl, i 6= dl) . (9)

• If node i is the destination node of a session l, we have:∑
k∈Ti

zlki = 1 , (i = dl) . (10)

Since no link is shared by multiple sessions, we define two
other variables fij and zij as fij =

∑
l∈L f

l
ij and zij =∑

l∈L z
l
ij . Then, we have:

zij ≤ 1 , (i ∈ N , j ∈ Ti) . (11)

4) Packet Transmission Model: Assuming that source nodes
in all sessions are always working to produce updates, and
each of them divides or adapts the generated data into packets
of a uniform size, denoted as pl for source node of a session
l. Notably, we allow variation of packet sizes in different
sessions. Denote λl as the generation rate at source sl of
session l, then the time interval of packet generation at the
sender sl is the constant 1

λl .
Let µlij denote the transmission rate of link (i, j) for

delivering packet of session l, with the rate constrained by
the total link capacity. We have:

µlij ≤ fijCij , (12)

where fij is the link activation frequency of all sessions and
Cij accounts for the link capacity in a link (i, j). We have:

Cij = WB log2(1 +
Pid
−γ
ij

N0
) , (13)

where WB is the bandwidth of each channel b, pi the power
spectral density from transmitter i, dij the distance between
nodes i and j, γ the path loss index, and N0 the ambient
Gaussian noise density.

When the network reaches the steady-state, to avoid the
packet loss caused by the infinite number of backlogged
packets at any relay node, the transmission time of each packet
on a link should be no larger than the packet generation time
interval of the session that employs it. We have the following
constraint:

1

λl
≥ pl

µlij
, (14)

for the active link (i, j). Since no link is shared with multiple
sessions, this can be reformulated as follows:

µlij ≥
∑
l∈L

λlplzlij . (15)

5) Throughput Model: To facilitate our exploration of in-
herent AoI and throughput relationships, in this paper, all
packets are assumed to be always delivered successfully to
destination nodes eliminating the probability events. Within a
time range (0, T ), the throughput of session l (denoted as U l)
can be expressed as

U l =
Kpl

T
= λlpl , (16)

Fig. 1. AoI variation at two consecutive nodes.

where K is the total number of packets generated within (0, T )
for this session. Hence, the constraint (15) can be rewritten as:

µlij ≥
∑
l∈L

U lzlij . (17)

B. AoI Formula

Let Ddl(t) indicate the generation time of the latest packet
reaching the destination node dl, l ∈ L. The instantaneous
AoI at time t, denoted by adl(t), is calculated by adl(t) = t−
Ddl(t). Based on the graphical argument, the total aggregated
AoI, denoted as ∆Adl , over time range (0, T ) at a destination
node dl can be calculated by the area under the curve of
instantaneous AoI, i.e.,

∆Adl =

∫ T

0

adl(t)dt . (18)

Then, the time averaged AoI at the destination node dl
(denoted as Adl ) in time range (0, T ) is expressed by:

Adl =
1

T

∫ T

0

adl(t)dt . (19)

To model AoI in the multi-hop networks, we first find the
AoI relationships of two consecutive nodes and then derive
AoI at a destination node recursively. Let Ali and Alj denote
the time averaged AoI at a node i and its successor node j
for the packets from a session l ∈ L. We have:

Lemma 1. If a link (i, j) is set up between node i and node
j, time averaged AoIs for packets (from the same source node
sl) at these two nodes satisfy the following relationship:

Alj = Ali +
pl

µij
. (20)

Proof. The proof is based on the graphical approach. As
shown in Figure 1, the kth packet is generated at time t(k) and
reaches node i and node j at time t̂i(k) and t̂j(k), respectively.
Assume a packet arriving at a node can be transmitted to its
successor node immediately without considering the propaga-
tion delay. Here, the dashed and solid lines represent the AoI
at nodes i and j, respectively. The difference of the aggregated
AoIs at nodes i and j during time (0, T ) equals the sum of
shadow parallelogram parts labeled in Figure 1. We have:

∆Alj = ∆Ali +

K∑
k=1

Qk , (21)



Fig. 2. AoI variation at node a, the successor of source node sl.

where K is the number of packets delivered within the time
span of (0, T ) and Qk is the area of kth parallelogram. From
Figure 1, the area Qk is expressed as the product of t̂j(k)−
t̂i(k) and t(k) − t(k − 1), which are the transmission time
of a packet via link (i, j) and the packet generation interval,
respectively. Hence, (21) can be given by

∆Alj = ∆Ali +
K∑
k=1

1

λl
pl

µij
. (22)

Then, we have the time averaged AoI at node j within (0, T )
as follows:

Alj =
1

T

{
∆Ali +

K∑
k=1

1

λl
pl

µij

}

= Ali +
K

T

∑K
k=1

1
λl

pl

µij

K

= Ali +
pl

µij
, (23)

where the term K
T is equal to the packet generation rate λl.

The importance of Lemma 1 is that it enables us to
recursively derive the time averaged AoI at a destination node
dl iteratively starting from the source node sl.

Theorem 1. Time averaged AoI at the destination node dl, l ∈
L, can be calculated by:

Adl =
1

2λl
+

∑
i 6=dl,zlij=1

pl

µij
, (24)

where j is i’s successor node and zlij = 1 represents that link
(i, j) is set up for transmitting packets over session l.

Proof. Based on Lemma 1, time averaged AoI at the destina-
tion node dl can be calculated iteratively from the source node
sl’s successor node a (where zlsla = 1). Hence, we have:

Adl = Ala +
∑

i 6=dl,i6=sl,zlij=1

pl

µij
. (25)

Here, zlij = 1 represents that link (i, j) is set up for transmit-
ting packets over session l. From Figure 2, the aggregated AoI
at the node a for session l, denoted by ∆Ala, equals the sum
of trapezoid parts, accounting the area difference between two
isosceles right triangles. Hence, we have:

∆Ala =

K∑
k=1

{1

2
[t̂(k)− t(k − 1)]2 − 1

2
[t̂(k)− t(k)]2} , (26)

where K is the number of packets delivered to node a. In
Figure 2, the kth packet is generated at time t(k) and received
by node a at t̂(k). The term of t(k) − t(k − 1) is the time
interval of packets generation, which equals 1

λl , and the term
t̂(k)−t(k) is the packet transmission time, which equals pl

µsla
.

As a result, the aggregated AoI can be calculated by:

∆Ala =

K∑
k=1

{1

2
[t̂(k)− t(k − 1)]2 − 1

2
[t̂(k)− t(k)]2}

=

K∑
k=1

[
1

2
(

1

λl
+

pl

µsla
)2 − 1

2
(
pl

µsla
)2]

=

K∑
k=1

(
1

2λl
2 +

pl

λlµsla
) . (27)

Thus, time averaged AoI at node a over (0, T ) is:

Ala =
1

T

K∑
k=1

(
1

2λl
2 +

pl

λlµsla
)

=
K

T

1

K

K∑
k=1

(
1

2λl
2 +

pl

λlµsla
)

= λl(
1

2λl
2 +

pl

λlµsla
)

=
1

2λl
+

pl

µsla
. (28)

where the term K
T is the packet generation rate λl of session

l. Combining (28) and (25), we have:

Adl = Ala +

zlij=1∑
i 6=dl,i6=sl

pl

µij

=
1

2λl
+

pl

µsla
+

zlij=1∑
i6=dl,i6=sl

pl

µij

=
1

2λl
+

∑
i6=dl,zlij=1

pl

µij
.

From (24), we can see that the first term is related to
packet generation interval while the second term comes from
the transmission delay over multiple traversed links on a
specified session route. Such an AoI formula exhibits that
the minimization of AoI in multi-hop wireless networks is
a comprehensive work involving the generation rate control,
channel allocation, link scheduling, interference, the routing
selection, and the delay management.

Denote Aave as the time averaged AoI of all sessions, then

Aave =
∑
l∈L

Adl =
∑
l∈L

(
1

2λl
+

zlij=1∑
i 6=dl

pl

µij
)

=
∑
l∈L

1

2λl
+

∑
i∈N

zlij=1∑
j∈Ti

pl

µij
. (29)



C. Problem Formulation

Our developed model aims to both maximize throughput
and minimize AoI. For throughput, we are interested in maxi-
mizing the minimum throughput (denoted as Umin) among all
sessions, i.e.,

Umin = min{U l, l ∈ L} . (30)

Then, it can be rewritten as the following constraint:

Umin ≤ U l, l ∈ L , (31)

Our problem can be formulated as a multi-criteria opti-
mization problem with the objectives of minimizing AoI and
maximizing throughput across all sessions. That is,

OPT min Aave

max Umin

s.t. The total time averaged AoI function: (29);

Interference constraints: (4), (5);

Links activation frequency: (7);

Routing constraints: (8), (9), (10), (11);

Transmission model: (12), (17);

Throughput model: (16), (31).

From OPT, we observe that the solution for the optimal
throughput may not lead to the minimal achievable AoI value
as each of them wishes to find the best resource allocation and
routing solutions for optimality individually. The next section
will analyze the relationships of those two metrics in multi-
hop wireless networks.

IV. QUALITATIVE ANALYSIS OF AOI AND THROUGHPUT
RELATIONSHIPS

In this section, we provide the qualitative analysis of rela-
tionships between AoI and throughput, especially under the
flexible routing, aiming to guide our algorithm design for
solving the problem OPT. One question will be answered
in our analysis: whether these two metrics can be always
optimized at the same time? In the following analysis, we
will consider two potential network scenarios, and examine
the AoI and throughput variations to discuss the condition that
optimizes the two metrics.

We first analyze the relationship of the two objectives under
the given routes. For ease of explanation, we take only one
session in multi-hop networks as an example and assume
that there is a known route in which the AoI has achieved
the global minimum. Under the solution of achieving such
an optimal AoI, denote links’ capacity among all channels
as {f1C1, f2C2, · · · , fnCn}. Without loss of generality, we
assume f1C1 ≤ f2C2 ≤ · · · ≤ fnCn. According to the
constraint (17), the maximum throughput is limited by f1C1.

To examine whether the AoI and throughput have arrived
at their optimum at the same time, we can check whether the
throughput can continue to improve. In the multi-hop route, it
is possible to have the following condition to be satisfied:

(fk − 1)Ck > f1C1, k ∈ {2, 3, · · · , n} . (32)

If this condition holds, even in the worse case where link 1
interferes with all other links, there still exists a new channel
allocation solution which can lead the links’ capacity to be:
{(f1 + 1)C1, (f2 − 1)C2, · · · , (fn − 1)Cn}. Hence, we can
arrive a larger throughput value with the new bottleneck link
capacity of (f1 + 1)C1. As the channel allocation solution
has been changed, the AoI may deteriorate. Our extensive
experiments have exhibited this condition holds in the majority
of our studies. One example will be also presented in our case
study (Figures 5(a) and 5(c) in Section VII-A). This indicates
that the throughput has the opportunity to increase at the
expense of AoI performance by altering channel allocations
results. Thus, we conclude that these two metrics may conflict,
hindering both of them concurrently achieving the optimal
values in the case of a fixed route.

We next check whether we can change the routing path
to increase the achievable throughput. According to (13), we
observe that the link capacity and the link length have the
following relationships: Cij ∝ log(d−γij ). Hence, the link
capacity increases with decreasing of the distance dij . When
optimizing AoI, we did not target to minimize the distance
of two neighboring nodes, thus it is possible existing other
routes that have shorter lengths for the bottleneck links, which
can achieve better throughput performances. However, since
the current AoI has achieved its minimum value, the change
of route may deteriorate AoI performance. Our experiments
also confirms that this is the general case in the multi-hop
networks. Our case study in Section VII-A will exhibit the
examples that shortening bottleneck links will improve the
network throughput but degrading the AoI performance.

Although our aforementioned analysis is intuitive and may
not be general enough to accommodate all network settings, its
results give us the hints that AoI and throughput often are not
optimized concurrently under typical network environments. In
contrast, they may conflict with each other sometimes. Thus,
the traditional optimization solutions toward obtaining a single
optimal solution cannot be applied here. Instead, we have to
develop a uniform solution that can adopt both scenarios, i.e.,
the two objectives boost or hinder each other. This inherently
brings the difficulty for us to develop the suitable algorithm
to solve the problem OPT. In the next section, we will design
an algorithm toward finding the Pareto-optimal point(s) that
can include both scenarios to represent the optimal tradeoff of
AoI and throughput.

V. ALGORITHM DESIGN FOR AOI AND THROUGHPUT
TRADEOFFS

In this section, we aim to simultaneously minimize AoI and
maximize throughput by pursuing the Pareto-optimal points to
exhibit their tradeoffs. The goal of our design is to develop an
algorithm that finds all Pareto-optimal points, corresponding
to all optimal solutions, for the multi-objective problem OPT.
Notably, for the scenario that AoI and throughput conflict with
each other, multiple Pareto-optimal points will exist. If the
two objectives boost with each other, i.e., achieving the global
optimal solution at the same time, only one Pareto-optimal
point will appear, which is a special case in our designed
algorithm.



A. Background for Pareto-optimal Solution

A Pareto-optimal point is a state of resource allocation
where neither objective can be improved without deteriorating
the other. The solution corresponding to a Pareto-optimal point
is called the Pareto-optimal solution. For a Pareto-optimal
solution φ∗, if the objective pair (A∗ave, U

∗
min) is a Pareto-

optimal point, there is no other feasible solution φ with the
objective pair (Aave, Umin) such that Aave < A∗ave and
Umin ≥ U∗min, or Aave ≤ A∗ave and Umin > U∗min. This means
it is impossible to find another solution to make AoI lower
without degrading throughput, or to increase throughput with-
out deteriorating AoI. Besides, an objective pair (Ãave, Ũmin)
to the solution φ̃ is a weakly Pareto-optimal point if there does
not exist a solution φ with Aave < Ãave and Umin > Ũmin.
It is apparent that a Pareto-optimal point is also a weakly
Pareto-optimal point whereas a weakly Pareto-optimal point
is not always a Pareto-optimal point.

B. Finding a Weakly Pareto-Optimal Point

In this section, we provide a two-step approach for deter-
mining a weakly Pareto-optimal point. First, we reformulate
OPT into a single AoI objective problem by adding a new
throughput constraint v while removing the throughput objec-
tive function. This problem is reformulated as follows:

OPT-AoI
min Aave

s.t. Throughput constraint: Umin > v ;

Constraints: (4), (5), (7)− (12), (16), (17), (29), (31).

By solving this problem, we get an optimal AoI value
(denoted as Avave) with a routing solution (denoted as Rv).
Notably, OPT-AoI is in the form of mixed-integer nonlinear
programming, which cannot be solved directly. Our developed
linearized algorithm (elaborated in Section VI) is applied here
to linearize the non-linear terms in the objective function
into a set of linear segments to make OPT-AoI solvable by
commercial solvers.

Second, we find the maximum throughput under solution
Rv , denoted as URv . Based on (16) and (29), we have:

Aave =
∑
l∈L

1

2λl
+

∑
i∈N

zlij=1∑
j∈Ti

pl

µij

=
∑
l∈L

pl

2U l
+

∑
i∈N

zlij=1∑
j∈Ti

pl

µij
. (33)

Let H(R,U) = Aave, where R = {n, f , z, µ} represents
resource allocation solutions and U = {U l|l ∈ L} represents
the throughput solutions. For a given route and the channel
allocation of selected links, for each session l, we have:

∂H
∂U l

= − pl

2U l
2 ≤ 0 . (34)

It indicates that AoI decreases as throughput increases until
both of them reach the optimal values. However, based on
constraints (17) and (12), the throughput with a known route

is limited to the bottleneck link’s capacity for the avoidance of
the unbound delay caused by infinite queuing at some relay
nodes. Let UR denote the maximum throughput achievable
under certain solution R. We have:

UR = min
zlij=1

{fijCij} , (35)

where zlij = 1 indicates the link (i, j) is in the known route
of l. This means, once the route and its channel allocation
scheme are known, AoI and throughput can achieve their local
optimal values simultaneously and the throughput is limited to
the value of UR.

Based on Eqn. (35), we can obtain the optimal throughput,
i.e., URv , under the solution of OPT-AoI.

Lemma 2. The objective pair (Avave, URv ) is a weakly Pareto-
optimal point.

Proof. The proof is based on contradiction. Assume that the
pair (Avave, URv ) is not a weakly Pareto-optimal point. There
must be a solution φ

′
with an objective pair (Av

′

ave, U
′

Rv ), that
satisfies Av

′

ave < Avave and U
′

Rv > URv . Since U
′

Rv > URv >
v, φ

′
is a feasible solution to problem OPT-AoI. However,

given Avave is the minimum value in this problem, we have
Av

′

ave ≥ Avave, contradicting the assumption.

Since a Pareto-optimal point is also a weakly Pareto-optimal
point, if we find all weakly Pareto-optimal points, all Pareto-
optimal points are then be included.

C. Determining All Pareto-optimal Points
This subsection provides an algorithm to determine all

Pareto-optimal points. While Section V-B describes how to
find a weakly Pareto-optimal point with a constant v, there
is an infinite number of values for v, making it impractical
to traverse all v values to identify all weakly Pareto-optimal
points. We provide an effective approach for selecting some
v values simply based on those weakly Pareto-optimal points
found, instead of arbitrarily searching for all v values. The
essence of our algorithm is to jump the routing path from one
to another by adjusting the values of v, with the following
general idea. In each iteration, an OPT-AoI problem is solved
with a throughput constraint v to find an optimal value of
AoI. The maximum throughput can be calculated based on the
current solution. Hence, we get a weakly Pareto-optimal pair
and then set v as the current maximum throughput value for
the next iteration. By comparing the AoI values, we single out
all Pareto-optimal points among those weakly Pareto-optimal
points found. Algorithm details are shown in Algorithm 1.

Theorem 2. The set O from Algorithm 1 includes all Pareto-
optimal points and the algorithm terminates in a finite number
of iterations.

Proof. The proof consists of three steps. We first show that
each objective pair in O is a Pareto-optimal point. Based
on Lemma 2, each objective pair (Avave, URv ) is a weakly
Pareto-Optimal point. Step 2.2 in Algorithm 1 is the screening
procedure of Pareto-optimal points among the weakly Pareto-
optimal points. Consider two objective pairs, denoted respec-
tively by (Aaave, URa) and (Abave, URb), and suppose the pair



Algorithm 1 Finding Pareto-optimal Points
Step 1:
Initialization: v = 0,M = 0, P = (0, 0), an empty set O.
Solve OPT-AoI with the parameter v.
Step 2:
while Existing feasible solution to OPT-AoI with the pa-
rameter v. do

Step 2.1:
Record the objective value Avave and the routing Rv .
Calculate URv based on (35).
Add the point P = (Avave, URv ) to O.
Step 2.2:
if Avave = M then

Remove the point P from O.
end if
Step 2.3:
M = Avave and v = URv .
Solve OPT-AoI with the parameter v.

end while

(Abave, URb) is found in the iteration after (Aaave, URa). Since
the parameter v is always equal to the throughput found in the
last iteration and the throughout keeps increasing, the solution
of Abave for OPT-AoI is also a feasible solution for Aaave,
yielding Aaave ≤ Abave. In Algorithm 1, any weakly Pareto-
optimal point with the same AoI value as that of the next point
is dropped from the set O, so Aaave < Abave. As URb > URa

and Aaave < Abave, we conclude that any two consecutive
points in O are Pareto-optimal points.

Next, we prove that all Pareto-optimal points are found by
Algorithm 1. This has to show that at each iteration, there
is no more Pareto-optimal point whose throughput value is
bigger than that found in the previous iteration (denoted as
(Apave, URp)) and is smaller than that derived in the current
iteration (denoted as (Acave, URc)).

This is proved by contradiction. Suppose there is a Pareto-
optimal point (A

′

ave, U
′
) satisfying the above assumption, then

URp < U
′ ≤ URc . As U

′ ≤ URc , the point (A
′

ave, U
′
) can

be a Pareto-optimal point only if A
′

ave < Acave, giving rise
to improved AoI. Based on the assumption of URp < U

′
,

the objective pair (A
′

ave, U
′
) is also a feasible solution for

problem OPT-AoI with the throughput constraint of U > URp .
Since Acave is the optimal value under this constraint, we
have A

′

ave ≥ Acave. This contradicts to A
′

ave < Acave. Thus,
there is no other Pareto-optimal point existing between two
neighboring ones.

Finally, we show that Algorithm 1 terminates in a finite
number of iterations. Since the activation frequency is an
integer variable in range (0, |B|) and Cij has at most N 2

different values, based on (35), the numbers of viable URv

and of v values are at most |B| · |N |2. Besides, from the
throughput constraint in problem OPT-AoI and Step 2.3 in
Algorithm 1, the value of throughput threshold v increases
with each iteration. Hence, Algorithm 1 terminates in a finite
number of iterations.

Fig. 3. The piece-wise approximation of 1
µ

with linear segments within the
approximate error η.

VI. LINEARIZATION OF OPT-AOI

The last section outlines a solution for determining all
Pareto-optimal points iteratively for the multi-criteria problem
of OPT. However, in each iteration, a single objective problem
OPT-AoI needs to be solved to find a corresponding weakly
Pareto-optimal point. As OPT-AoI is in the form of non-
linear non-convex programming, we apply the piece-wise
linearization technique to transform the problem of OPT-AoI
into mixed-integer linear programming (MILP), so that it can
be directly solved by commercial software.

A. Linearization of 1
µ

A nonlinear part of OPT-AoI lies in the objective function,
i.e., 1

µij
in (33). With g(x) = 1

x , the objective function then
can be replaced by:

Aave =
∑
l∈L

pl

2U l
+ pl

∑
i∈N

zlij=1∑
j∈Ti

g(µij) .

As ∂g(µ)
∂µ2 = 2

µ3 > 0, g(µ) proved to be a convex function. This
allows us to employ the piece-wise linearization technique to
approximate the curve of g(µ) with a set of linear segments
while ensuring the gap between the value of any point on g(µ)
and that on the corresponding linear segments to stay within
an approximate error η as shown in Figure 3.

We denote the minimum value of µ as Cmin, which is Cij
of the bottleneck link among all sessions. Since the maximum
value of fij is |B|, µ is upper bounded by |B|Cmax (from (12)),
where Cmax is the maximum value of Cij among all links.
Assuming that the minimum number of linear segments is S,
µ0 is the X-axis value for the start point, and µ1, µ2 · · · , µS
are the X-axis values for the end points of linear segments,
we have µ0 = Cmin and µS = |B|Cmax.

To ensure the minimum number of S, we start to calculate
the slope of the first segment from µ0 and ensure the approx-
imate gap between this linear segment and the original curve
to be no more than η. With this start point and the slope,
we obtain the end point of this segment that intersects with
the original curve and treat it as the start point of the second
segment, denoted by µ1. We repeat the above process until
finding adequate segments that cover the entire feasible range



of µ. Denoting the s-th linear segment and its slope as Gs(µ)
and qs, respectively, we have:

qs =
g(µs)− g(µs−1)

µs − µs−1
, (36)

Gs(µ) = qs · (µ− µs−1) + g(µs−1) . (37)

Within each range of (µs−1, µs), there is a point with the
maximum gap between the linear segment and the curve,
denoted as η. If the x-coordinate of that point is denoted by
µ̂s, we have:

∂g(µ̂s)

∂µ
− qs = 0, Gs(µ̂

s)− g(µ̂s) = η. (38)

The slope qs can be obtained by solving above equations. If for
the start point of the s-th segment with g(µs−1) ≤ η, we set
its end point at µs = |B|Cmax and then have the last segment
drawn from (µs−1, g(µs−1)) to (|B|Cmax, g(|B|Cmax)). Al-
gorithm 2 gives the details of finding the values of µ1, · · · , µS
and slopes q1, · · · , qS for any given approximate error η,

Algorithm 2 Piece-wise Linearization
Initialization: s = 1 and µs−1 = Cmin.
while µs−1 < |B|Cmax and g(µs−1) > η do

Calculate slop qs by solving (38).
With qs, calculate µs based on (36).
s = s+ 1.

end while
if µs−1 ≥ |B|Cmax then
S = s − 1, µS = |B|Cmax, and recalculate qS based on
(36).

else if g(µs−1) ≤ η then
S = s, µS = |B|Cmax, and calculate qS based on (36).

end if

Lemma 3. The approximation error within each linear seg-
ment derived from Algorithm 2 is no more than η.

The proof is based on the aforementioned construction
process and is omitted here. With Algorithm 2, we can
approximate 1

µ in the objective function via a set of linear
segments with an error upper bounded by η.

B. Linearization of 1
U

Similarly, the non-linear part for throughput in the objective
function of OPT-AoI also appears in the g(x) form, i.e.,
1
U l . We follow the same piece-wise linearization solution as
above to reformulate it into a set of linear segments with a
guaranteed approximate error, denote by η2. Specifically, it
determines the minimum number of linear segments E, the
slopes q1u, q

2
u, ..., q

E
u , the X-axis values U0, U1, U2..., UE of

the linear segments.

C. Problem Reformulation and Approximate Gap

Let G(µ) and G2(U) represent the concatenated linear seg-
ments for 1

µ and 1
U , respectively, derived from Sections VI-A

and VI-B. The objective minAave of OPT-AoI can be replaced
by the following linear function and constraints:

min ALave

s.t. ALave =
pl

2

∑
l∈L

G2(U l) + pl
∑
i∈N

zlij=1∑
j∈Ti

G(µij) ; (39)

G(µij) ≥ qs · (µij − µs−1) + g(µs−1) ,

G2(U l) ≥ qeu · (U l − Ue−1) + g(Ue−1) ,

(s = 1, 2, · · · , S, µ ∈ [Cmin, |B|Cmax]) ,

(e = 1, 2, · · · , E, U ∈ [0, |B|Cmax]) . (40)

Then, the original OPT-AoI problem is reformulated into the
following new optimization problem, i.e.,

OPT-L min ALave

s.t. Throughput constraint: Umin > v ;

Constraints: (4), (5), (7)− (12), (16), (17),

(29), (31), (39), (40).

OPT-L is in the form of mixed integer linear programming,
which can be solved by commercial solvers (e.g., CPLEX [25])
efficiently. The following theorem characterizes the error
bound between the optimal objective values of OPT-L and
those of the original OPT-AoI problem.

Theorem 3. The gap between the optimal objective values of
OPT-AoI and those of OPT-L, ε, is upper bounded by:

pl

2

∑
l∈L

η2 + pl
∑
i∈N

zlij=1∑
j∈Ti

η. (41)

Proof. Suppose the optimal solution of OPT-AoI is ϕ∗AoI =
{n∗ij [b], f∗ij , z∗ij , µ∗ij , U l

∗} with the objective value being AO∗ave.
Because the solution ϕ∗AoI meets all constraints in OPT-L, we
can construct a feasible solution (denoted as ϕAoI−L) with its
n, f , z, µ and U values kept the same as those in ϕ∗AoI of
G(µ) and G2(U). Denoting the objective value of the solution
ϕAoI−L as ALave, we have:

ALave −AO∗ave =
pl

2

∑
l∈L

G2(U l
∗
) + pl

∑
i∈N

zlij=1∑
j∈Ti

G(µ∗ij)

− pl

2

∑
l∈L

g(U l
∗
)− pl

∑
i∈N

zlij=1∑
j∈Ti

g(µ∗ij)

≤ pl

2

∑
l∈L

η2 + pl
∑
i∈N

zlij=1∑
j∈Ti

η ,

where the last inequality is derived from Lemma 3. Let
ε = pl

2

∑
l∈L η2 + pl

∑
i∈N

∑zij=1
j∈Ti η and ϕ∗AoI−L denote the

optimal solution of OPT-L, with the objective value of AL∗ave.
Since ALave is the value of a feasible solution to OPT-L, we
have AL∗ave ≤ ALave. As a result, AL∗ave−AO∗ave ≤ ALave−AO∗ave ≤
ε.

Note that (29), (7), and (17) of OPT-L also include the non-
linear terms. Those terms can either be reformulated through



Fig. 4. The Pareto-optimal points found by our Algorithm.

Reformulation Linearization Technique (RLT) [26], [27], or
be automatically linearized by using the boolean expression
in the CPLEX solver with great efficiency.

Our complete solution for OPT-AoI is summarized as
follows: for a pre-defined approximate error ε, we first can
calculate the linearization errors η and η2 and then construct
a set of linear segments based on Algorithm 2. After that, we
reformulate OPT-AoI into OPT-L, which is solved by CPLEX.

VII. NUMERICAL RESULTS

In this section, we present the numerical results of AoI and
throughput performance in multi-hop networks with flexible
routing paths. Our goal is twofold. First, we illustrate how
our algorithm identifies the AoI and throughput tradeoff, and
show the impact of routing paths on such tradeoffs. Second,
we reveal the achievable AoI and throughput curves under
different network settings in multi-hop networks.

A. A Case Study

We randomly generate a 25-node network in a 100 × 100
area. For generality, we normalize the units for distance,
bandwidth, power, packet generation, and transmission rate
with appropriate dimensions. For demonstrating the impact
of routing on the optimal throughput and AoI tradeoff, we
take one session as an example for ease of explanation, as
depicted in Fig. 5, where the location of each node is shown,
so are the source and destination nodes. Assume that there
are 15 available channels, each with the bandwidth of 10. The
transmission power spectral density of each node i is 10, the
pass loss index γ is 4, and the ambient Gaussian noise density
equals N0 = 10−6. The node transmission and interference
ranges are 35 and 55, respectively. The packet size p is 1000
among all sessions. We set the approximate error ε = 0.1 in
the linearization algorithm.

According to the above setting, Algorithm 1 executes a
total of 7 iterations, in which all resultant points are Pareto-
optimal points. In the first iteration, by setting the throughput
constraint v = 0 and solving the problem of OPT-AoI, we get
the minimum value of AoI equal to 23.6, with its associated
route marked in Fig. 5(a). The maximum throughput found
here is 146.8, giving rise to the first AoI and throughput
tradeoff pair of (23.6, 146.8). After this iteration, we set v
to the current maximum throughput of 146.8 and continue to
run our algorithm. Repeating the above process, our algorithm

then returns another six Pareto-optimal points: (23.8, 154.0),
(23.9, 162.0), (31.4, 178.0), (32.3, 184.8), (32.8, 188.4), and
(33.0, 191.1). Fig. 4 illustrates all AoI and throughput tradeoff
points. The routing paths corresponding to all those Pareto-
optimal points are shown in Figs. 5(a) to (g).

Table I shows the transmission rate of each link in the
routing path of each iteration, with the bottleneck link marked
with “

√
”. We indicate link numbers as 1, 2, · · · , from the left

to right of each route in Fig. 5. From this table, we can see
the throughput increases due to lifting the transmission rate of
the bottleneck link from iteration 1 to iteration 7. This is done
by either introducing multiple links with shorter distances or
by re-arranging the channel allocation scheme. For example,
from Fig. 5(a) to Fig. 5(b), the routing path is changed to the
one with a shorter averaged link distance, from 26.27 down
to 25.86, as shown in Table I, resulting in the throughput
increases from 146.8 to 154.0. The AoI performance degrades
with such a throughput increase. Similar cases also happen
in Fig. 5 from (c) to (d), (d) to (e), and (e) to (f). On the
other hand, comparing Fig. 5(a) and Fig. 5(c), we observe
that the routing paths appear to be the same. From Table I,
we can see in the first iteration (corresponding to Fig. 5(a)), the
third link is the bottleneck link with the transmission rate of
146.8 and in the third iteration (corresponding to Fig. 5(c)),
link 2 becomes the bottleneck with the transmission rate of
162.0, due to the change of channel allocation scheme. Such
a change makes AoI degrade from 23.6 to 23.9. A similar
channel allocation change also happens from Fig. 5(f) to
Fig. 5(g). These results conform to the conditions discussed
in our analysis of Section IV.

From those AoI and throughput performance results, we
see that one performance metric improves at the expense of
degrading the other, with the routing path found as one of the
key factors in determining such a tradeoff. As shown in Table I,
we can observe that the averaged transmission rate decreases
from 267.5 to 213.8 when the number of hops increases from
5 to 7. In this study case, the minimum AoI is achieved with
the fewest-hop path due to the reason that more hops involve
more intermediate nodes and lower mean transmission rates,
to lengthen the transmission delay and thus heighten AoI.

From Fig. 5 we observe that the trend for lifting the
throughput of the session is to increase the number of hops
(while worsening AoI). The reason is that by increasing the
hop count of a route, the distance between two neighboring
nodes decreases, thus exponentially heightening the transmis-
sion capacity of their corresponding link accordingly.

B. Comparative Results

We next examine the impact of a certain network setting
in multi-hop networks on the optimal AoI and throughput
tradeoff.
Impact of Session Amounts. We first consider various
numbers of sessions in the networks. We follow the similar
network setting as in Section VII-A and increase the number
of sessions to 2, 3, and 5. Fig. 6 shows the optimal throughput
and AoI curves (by connecting all Pareto-optimal points) under
different numbers of sessions. From this figure, optimal AoI



TABLE I
TRANSMISSION RATE OF LINKS IN EVERY ITERATION AND THE AVERAGED LINK DISTANCES IN EACH ROUTE, WITH THE BOTTLENECK LINK MARKED.

Transmission Rate Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Averaged Rate Averaged Link Distance
Iteration 1 213.6 202.5 146.8(

√
) 181.8 593 – – 267.5 26.27

Iteration 2 282.6 160 154(
√
) 181.8 474.4 – – 250.6 25.86

Iteration 3 213.6 162(
√
) 183.5 181.8 474.4 – – 243.1 26.27

Iteration 4 178(
√
) 206.4 184.8 183.5 381.5 216.8 – 225.2 22.03

Iteration 5 188.4 254.8 194 184.8(
√
) 232.8 197.6 314.8 221.3 20.97

Iteration 6 188.4(
√
) 254.8 193.8 210 232.8 197.6 236.1 216.2 20.56

Iteration 7 235.5 191.1(
√
) 193.8 210 232.8 197.6 236.1 213.8 20.56

(a) The route for OPT-AoI with through-
put constraint v=0 in the 1st iteration.

(b) The route for OPT-AoI with through-
put constraint v=146.8 in the 2nd iteration.

(c) The route for OPT-AoI with through-
put constraint v=154.0 in the 3th iteration.

(d) The route for OPT-AoI with through-
put constraint v=162.0 in the 4th iteration.

(e) The route for OPT-AoI with through-
put constraint v=178.0 in the 5th iteration.

(f) The route for OPT-AoI with through-
put constraint v=184.8 in the 6th iteration.

(g) The route for OPT-AoI with through-
put constraint v=188.4 in the 7th iteration.

Fig. 5. The routes of different AoI and throughput tradeoff points.

is seen to drop with an increase in the maximum throughput
value. This demonstrates the importance of exploring AoI and
throughput relationships when studying AoI in the network. In
addition, both AoI and throughput deteriorate as the session
count in the networks rises. The reason is that more sessions
occupy more network resources, thus suffering from higher
interference in the network. The resource allocated to each
session drops, thereby resulting in larger AoI and lower
throughput.
Impact of Interference Strength. We next unveil the im-
pact of interference ranges on the AoI-throughput curve. We Fig. 6. The AoI and throughput tradeoff with different numbers of sessions.



Fig. 7. The AoI and throughput tradeoff with different interference ranges.

Fig. 8. The AoI and throughput tradeoff under different routing schemes.

randomly generate 3 sessions and vary the interference range
from 50, 60, to 70, with AoI-throughput curves depicted in
Fig. 7. It is seen that both AoI and throughput deteriorate with
an increase in the interference range as expected, because a
larger interference range results in a lower average activation
frequency among links. Thus, throughput drops as the result of
a lower bottleneck link transmission rate, and AoI rises with
a longer transmission time.
Comparison with Different Routing Schemes. We now
fix the number of nodes as 25 and generate a single session
to explore the impact of routing selection on our solution.
As there exist no prior solutions exploring the routing and
AoI-throughput tradeoff in multi-hop networks, we take the
shortest path and the minimum averaged link distance schemes
into consideration for comparison, with the results depicted in
Fig. 8. By comparing three Pareto-optimal curves, we see our
flexible routing solution to achieve the best in both throughput
and AoI. This demonstrates the advantage of our proposed
flexible routing scheme. Meanwhile, the shortest path scheme
exhibits better AoI while the minimum averaged link distance
scheme enjoys higher network throughput, when comparing
two of them. The reason is that the former involves fewer relay
nodes to yield less transmission delay, thus leading to lower
AoI. The latter results in larger averaged link capacity, helping
to lift the throughput. However, more relay nodes involved in
this scheme heighten AoI.

VIII. RELATED WORK

The conception of AoI was first proposed in [2], [3] as a
node perspective metric to measure the data freshness and has
received wide attention recently. Extensive works have studied
the AoI optimization in single-hop network settings. For
instance, generation rate control was studied in [2], in which

authors mathematically calculated the optimal generation rate
with the First Come First Served (FCFS) policy to optimize
AoI at the destination. Later on, the study was extended to the
network setting with multiple sources [3]. Besides, the zero-
wait policy, in which the source node starts transmitting a new
update once the previous one is delivered to the destination,
has been proved to worsen AoI in [4]. Such work implies that
minimizing AoI may conflicts with maximizing throughput,
which results from the zero-wait scheduling policy.

In addition, various queuing packet management methods
have been pursued in [5], [6], [7], where their analyses have
demonstrated the similar results that discarding old packets
can help improve the data freshness. Moreover, the scheduling
policies have been examined for AoI reduction. [8] considered
the Last Generated First Served (LGFS) queue scheduling
with/without preemption. The AoI variations under preemp-
tive LGFS have been explored under multi-server single-hop
networks in [9] and replication techniques with the LGFS
policy have been considered for further AoI improvement [10].
Besides, the LGFS policy has been extended to the Max-Age-
First LGFS in [11]. All these works merely considered simple
network settings and controls without taking into account the
impacts of the real-world factors.

Recent studies expand the AoI analysis scope in the single-
hop network with different practical settings. The channel
access techniques, such as ALOHA and Round Robin, were
considered, with [14] employing the slotted ALOHA to sched-
ule packet transmission for minimizing AoI and [13], [14]
adopting the “take turns” method for scheduling multiple
terminals to communicate with one BS. Meanwhile, different
network environments and practical constraints were also con-
sidered. The interference among links was addressed in [15]
and energy-consuming and harvesting were studied for AoI
optimization in [19]. [28] addressed the AoI optimization
problem in the scenario where a central station and a set of
terminals exchange their data via a mobile agent in order
to provide the optimal path for the agent. [29] considered
the request and response behavior that accounts for the data
freshness of only users’ requests.

The throughput was considered for optimal AoI scheduling
earlier in [16], [17]. However, it is only set to be a con-
straint with its value being greater or less than a constant
value, to demonstrate the importance of exploring both AoI
and throughput at the same time. The landscape view of
the inherent relationship between AoI and throughput was
unexplored therein. In [23], the authors mentioned the relation-
ship between throughput and AoI in the single-hop network,
knowing that the studied problem becomes more challeng-
ing in analyzing multi-hop environments. [18] explored the
tradeoff (Pareto-optimal solutions) between the throughput of
two clients or the AoI of two clients independently, but it
failed to address the relationship between AoI and throughput,
especially in the multi-hop networks.

Some studies targeted the AoI optimization problem in
multi-hop networks. Specifically, [20] and [21] performed
AoI analyses under the special network topologies, with [20]
dealing with the gossip networks with nodes connected as
line or star topologies, and [21] adopting a sampling policy



to optimize AoI in two-hop networks while considering the
energy-harvesting nodes. The network in which each source
node takes turns to broadcast its information to other nodes
was pursued in [30]. Then, authors in [31] showed that the
LGFS scheduling policy can help improve the AoI in multi-
hop networks under the arbitrary packet generation and arrival
times, but the formula of AoI and its achievable values were
not provided. None of prior studies accounts for the real-
world factors such as interference among links, route selection,
and multi-access techniques, thus significantly simplifying the
network models. Although [22] has considered the interference
constraint in the multi-hop networks and offered the optimal
link activation scheduling mechanism based on their previous
work [15], its models simplify the network setting by pre-
grouping interference-free sets without providing the actual
channel access modulation. Notably, our work is utterly dif-
ferent from all previous studies since we provide the general
multi-hop model while considering the common real-world
factors including interference, channel allocation, link schedul-
ing, link capacity, and routing path selection. Then, we explore
the relationships between AoI and throughput in such general
multi-hop wireless networks for the very first time, with the
impact of flexible routing taking into account.

IX. DISCUSSION

Some limitations exist for this presented work, as stated in
sequence below.

First, this work considers the multi-hop network setting
where multiple sessions may intersect at some nodes but
may not share the same link. The main concern comes
from queuing and scheduling issues which result from the
multi-source problem at each shared link, since packets that
arrive at the link from different sources may follow distinct
distributions to behave irregularly. Hence, it is critical on
how to schedule the transmission of packets from different
sources at the intermediate nodes in the multi-hop settings.
The new analysis of the queuing management and scheduling
strategies in such a scenario is needed, exhibiting as an open
and challenging problem.

Second, this work assumes that all packets can be delivered
successfully to destination nodes. It is challenging to con-
sider transmission failures in the multi-hop flexible routing.
Compared to the single-hop settings, where a transmission
failure can be directly modeled by the assigned success
probability at links, however, multi-hop networks have to
account for the dilemma that transmission failures can happen
at all traversed links. Even if we can model the transmission
success probability for entire routes, the modeling for such
transmission failures results in a considerable computational
expenditure in the multi-hop scenario, due to flexible routing
with many potential combinations of links for constructing
routes. Consequently, a new analysis of the queuing manage-
ment, scheduling strategies, and transmission failures in such
a scenario is needed. We defer this exploration to our future
work.

Third, our simulation outcomes have revealed that routing
plays a significant role in the tradeoff between AoI and

throughput, and our case studies show insights that routing
with fewer traversed nodes is to better improve the AoI but
hinder the throughput. Because of the heavy complexities of
the modeled multi-criteria optimization problem, we cannot
mathematically confirm our findings with solid proofs. Our
future work will make effort on refining our network modeling
and deepening our analysis of routing influence on these two
metrics.

X. CONCLUSION

Although AoI has been widely explored in the research
community, its study in multi-hop networks and its relation-
ships with other performance metrics are not well addressed
yet. This paper presented an in-depth study on the optimal
AoI and throughput tradeoff in multi-hop networks for the
first time, with such physical factors as channel allocation,
scheduling, and flexible routing selection taken into consid-
eration. A rigorous mathematical model has been developed
to characterize the interrelation of AoI and throughput. By
formulating a multi-objective problem and exploring their
relationships, we have developed a novel algorithm to find
Pareto-optimal point(s) to identify all tradeoff point(s) of the
optimal AoI and throughput, covering the network scenarios
where AoI and throughput boost and hinder with each other.
Our algorithm has been proved to find all Pareto-optimal
points with a small number of iterations. The simulation
results have demonstrated the existence of a tradeoff between
AoI and throughput, with one performance metric improved
at the expense of degrading the other. Our mathematical
development, algorithmic solutions, and results included in
this paper shed light on wireless network design by relating
two key performance metrics, calling for AoI and throughput
optimization simultaneously, instead of optimizing solely one
metric individually.
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