
Adaptive Incremental Checkpointing via Delta Compression
for Networked Multicore Systems

Itthichok Jangjaimon and Nian-Feng Tzeng
Center for Advanced Computer Studies

University of Louisiana at Lafayette
Lafayette, LA 70504

{ixj0704, tzeng}@cacs.louisiana.edu

Abstract—Checkpointing has been widely adopted in support
of fault-tolerance and job migration, with checkpoint files
preferably kept also at remote storage to withstand
unavailability/failures of local nodes in networked systems.
Lately, I/O bandwidth to remote storage becomes the
bottleneck for checkpointing on a large-scale system. This
paper proposes an adaptive incremental checkpointing (AIC),
aiming to reduce the checkpointing file size considerably so
that its involved overhead is lowered and thus the expected job
turnaround time drops. Given production multicore systems
are observed to have unused cores often available, we design
AIC to make use of separate cores for carrying out multi-level
checkpointing with delta compression at desirable points of
time adaptively. We develop a new Markov model for
predicting the performance of such multi-level concurrent
checkpointing, with AIC performance evaluated using six
SPEC benchmarks under various system sizes. AIC is
observed to lower the normalized expected turnaround time
substantially (by up to 47%) when compared to its static
counterpart and a recent multi-level checkpointing scheme
with fixed checkpoint intervals.

Keywords—Adaptive checkpointing; delta compression; fault
tolerance; incremental checkpointing; Markov model; multicore
systems; two-level checkpointing.

I. INTRODUCTION
Checkpointing saves the states of a running process to a

persistent storage, allowing it to be restarted from that stored
state (called a checkpoint). It has been applied successfully
in support of fault tolerance and job migration essential for
virtualization and cloud computing [7], in addition to
facilitating code debugging. Given a system node usually
contains multiple cores nowadays, checkpointing and
execution recovery after failures in the system can be
handled more diversely and efficiently than can be possible
in its single-core counterpart. This article focuses on
checkpointing in networked multicore systems, aiming to
reduce its overhead with an aid of multiple cores existing in
each system node.

Recent work has shown that checkpointing to remote
storage in a large-scale networked system is relatively
expensive but necessary to have acceptable reliability of
long-running jobs [11], calling for multi-level checkpointing
able to tolerate various failure/unavailability types. In
general, checkpointing overhead is dictated by the
checkpoint file size due to bandwidth constraints on
local/remote storages [11, 17, 19]. Given continuing growth

in the application program footprint, the checkpoint size is
expected to rise going forward. Much research has been
carried out to lower or even hide checkpointing overhead [6,
16, 18]. One common strategy follows incremental
checkpointing [6, 16], which saves only modified memory
pages into the checkpoint. In addition, delta compression (or
differencing compression) between successive checkpoints is
employed to further reduce the checkpoint size.

Previously, a checkpointing scheme employs simple delta
compression (like an XOR method) because job execution is
suspended during the delta compression time. In contrast,
our interest here lies in process execution on multi-core
systems, with a separate core for handling delta compression
and writing compressed outcomes to remote storage
concurrently when the process is executed on the other
core(s). An idle core is frequently available at each node of
real-world systems (as demonstrated by computing system
logs from the Los Alamos National Lab, LANL, in Section
II), and such an available core is exploited in this work for
carrying out delta compression and outcome writes to remote
storage concurrently without suspending job execution
progress in other active computation cores. As compression
performance relies on the degree of similarity between two
consecutive checkpoints, the desirable points of time to take
checkpoints is paramount in any effective checkpointing
mechanism (detailed in Section II), usually calling for
adaptive checkpointing. This is unlike traditional
checkpointing which takes checkpoints periodically in an
equidistant interval computed by averaging checkpoint
overhead amounts and failure rates to minimize the process’s
expected runtime [4, 11, 18, 21, 24].

Recently, dynamic checkpoint intervals or skipping some
(fixed) checkpoints have been considered [14, 23], because
checkpointing overheads and system parameters vary. This
article presents design and implementation of adaptive
incremental checkpointing (AIC) with delta compression
realized by dedicated cores for networked multicore systems.
AIC determines the desirable points of time to take
checkpoints adaptively based on predicted checkpoint
overhead during execution progress and system parameters.
It relies on fast prediction governed by Stepwise regression
[13] and a Gradient Descent algorithm [1] to estimate at fine
granularity in real time, the overhead of incremental
checkpointing with delta compression. Unlike its static
counterparts treated earlier [4, 11, 21, 24], AIC leverages on
the fact that the in-memory process contents of a running
task and those of its previous checkpoints have varying
degrees of similarity during its execution, dictated by how

2013 IEEE 27th International Symposium on Parallel & Distributed Processing

1530-2075/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPS.2013.33

7

2013 IEEE 27th International Symposium on Parallel & Distributed Processing

1530-2075/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPS.2013.33

7

much the working set is in common to those working sets
when previous checkpoints were taken. Hence, it calls for
estimating the similarity degree during task execution to
dynamically choose a desirable point of time that yields the
smallest checkpoint file after delta compression. AIC differs
from earlier adaptive checkpointing mechanisms, which are
unaware of delta compression dynamics, and are realized by
either skipping certain fixed checkpoints dynamically [14] or
treating single-level checkpoints without separate cores for
remote concurrent checkpointing during job execution [23].

A multi-process job may involve either a lot of
communications among its processes during job execution,
as exemplified by heroic MPI applications, or limited
communications (typically only at the beginning and the end
of its execution), such as MapReduce-like jobs and many of
Recognition, Mining, and Synthesis (RMS) workloads [2].
For brevity, we refer to these two distinct job types as MPI
and RMS tasks, respectively. Given that multi-level
checkpointing has just been introduced recently [11], with
prior concurrent checkpointing work focusing only on net
measured overhead [16] or single-level checkpointing [22],
we develop, for the first time, a new Markov model for
predicting expected job turnaround time (for single-process,
MPI, and RMS jobs) under multi-level concurrent
checkpointing. Under the actual application and system
profiles from Lawrence Livermore National Laboratory
(LLNL), our multi-level concurrent checkpointing always
reduces the turnaround time noticeably when compared to its
Moody’s counterpart, the best known multi-level
checkpointing model [11].

This work focuses solely on developing AIC for RMS
tasks, where each processes can freely checkpoint at
different times. (AIC for MPI tasks requires tracking
similarity degrees of all MPI processes for coordinated
checkpointing, which is beyond the scope of this work and
will be treated in a separate article.) Our AIC has been
implemented in BLCR (Berkeley Lab Checkpoint/Restart)
[8] to evaluate its real performance using six SPEC
CPU2006 benchmarks, as representatives of RMS task
processes. The results demonstrate that in the absence of
failures, AIC lengthens actual execution times only
negligibly (upper-bounded by 2.6%) in comparison to those
without checkpointing. For real-world networked systems
with potential failures, AIC reduces the expected job
turnaround time by up to 47% when compared with its non-
adaptive counterpart.

II. CHECKPOINTING BASICS AND MOTIVATION

A. Checkpointing Basics
A networked system may write its checkpoint data to

various places, involving different levels of overhead and
resilience. Multi-level checkpointing [11, 21] is the most
noticeable example, able to handle different kinds of failures.
In addition to local disks, for example, the system may also
write its checkpoints to remote nodes [11, 21], to distributed
file storage [11], or to the main memory of a group of nodes
that form RAID-5 redundancy [11, 18]. Naturally,
checkpointing overhead is dictated mainly by the checkpoint

size, prompting incremental checkpointing and delta
compression for size reduction. An example is given below.

Scenario 1: Consider a simple process with seven
initial memory pages, called A to G, involving three
checkpointing instances. Assume that the process allocates
two more pages, H and I, and modifies pages A, B, D, E, H,
I, before the second checkpoint, and that the process frees
page C and modifies pages D, E, F, G, after the second
checkpoint but before the third checkpoint.

Fig. 1 illustrates memory contents involved in the three
checkpoints. While incremental checkpointing keeps simply
modified and new pages (e.g., pages A, B, D, E, H, and I, in
the second checkpoint), delta compression further reduces
the checkpointed size by writing only difference (called
delta) between each modified page (called target data) and
its corresponding old version (called source data) written in
the previous checkpoint, if available (e.g., pages A, B, D, and
E in the second checkpoint). Given the source data and
associated delta, decompression can produce the target. The
very first checkpointing instance is always full. To restart a
process, incremental checkpointing requires the last full
checkpoint and all incremental checkpoints generated after
that full one. The system may generate a full checkpoint
periodically to limit this cumulative overhead.

We classify checkpoint type into local and remote.
Local checkpoint does (possibly incremental) checkpoint at
the disk (or memory) of a local node. Remote checkpoint
performs a mirror checkpoint over the network (possibly to
the remote storage, or to RAID-5 group). To lower its
overhead, AIC remote checkpoint is enhanced innovatively
by (1) monitoring the process page similarity so that the
system does checkpoint when the similarity is high, and (2)
concurrently executing delta compression and delta
transmission on separate processor cores, allowing non-
interrupted job execution. As a result, AIC remote
checkpointing is dynamic (instead of static, carried out
periodically), facilitating more aggressive delta compression
[10]. It enjoys marked 47% reduction, when compared with
its static counterpart.

B. Motivating Example for Adaptive Checkpointing
The basic idea of AIC relies on the fact that the time

duration for completing delta compression (dubbed delta
latency) and its resulting size (dubbed delta size) are
dynamic with respect to the checkpointing moment (dubbed
checkpoint time). AIC aims to predict the delta latency and

A

G

FED

CB A

HG

FED

B

I

A

HG

FED

CB

I

1st Checkpoint 2nd Checkpoint 3rd Checkpoint

 Fig. 1. Process in-memory contents at checkpoints. Each grey block
represents a page whose contents have been modified or allocated
since the last checkpoint. An underlined block denotes a page kept
in the previous checkpoint, available for further size reduction by
delta compression.

88

the delta size for determining the most beneficial moments to
take checkpoints adaptively. A motivating case observed in
our real experiment is given next to illustrate the fact that
dynamic two-level checkpointing is preferred.

We took page-aligned delta compression (detailed in
Section IV.C) between the first full checkpoint and the
second incremental checkpoint at different moments, with
the normalized delta latency and delta size outcomes (with
respect to their corresponding benchmark’s means, i.e.,
(delta latency (or size)) / (mean latency (or size) over the 60-
second interval)) versus the checkpointing time depicted in
Fig. 2. Each delta latency result in Fig. 2 includes the time to
read two checkpoints, to conduct delta compression, and to
write delta back to the local disk.

The results of Fig. 2 reveal clearly that wide swings in
the delta latency/size over time may exist for a benchmark,
making the selection of proper times to take checkpoints
especially crucial for overhead reduction. For example,
Sjeng exhibits a decrease of 95% in its delta latency and
delta size if its checkpoint is taken at the 35th second, instead
of the 32nd second (shown by line segments with triangles in
Fig. 2). In fact, five (out of those six) SPEC benchmarks
examined (as listed in Table 3; see Section V.B) have wide
swings in their delta latency/size curves. Our adaptive
checkpointing is based on predicting the delta compression
latency/size at a given checkpoint time effectively to choose
the most desirable point of time for checkpointing.

C. Opportunities for Concurrent Checkpointing
Since AIC aims to exploit an idle core per node for its

concurrent checkpointing, one may ask whether such an
opportunity exists. To answer this question, we analyze
usage logs of 5 computing systems at Los Alamos National
Laboratory (LANL) available in the public domain [15].
The 5-year logs consist of over 3 million job records, each
with the submit time, dispatch time (from queue), end time,
and running node IDs for every execution process. We
define a candidate job as the job where each of its processes
always has one idle core throughout its execution. In other
words, a candidate job can exploit those idle cores for
concurrent checkpointing without purging or suspending

other job execution processes. Table 1 lists properties of 5
systems and the numbers of candidate jobs. It shows that
more than 40% of jobs running in 4 systems (i.e., Systems
15, 23, 8, and 16) always have one idle core for each of their
processes. On the other hand, System 20 has only 17%
candidate jobs, chiefly because the scheduler assigned
processes to small subsets of nodes. It is possible to rectify
the scheduler slightly to leave one core dedicated for
checkpointing, if available, so that the numbers of candidate
jobs can be boosted. The last column of Table 1 lists the
percentages of candidate jobs under the rectified scheduler,
which leads to more candidate jobs for the systems with
multiple nodes (i.e., all but System 15). One possible
technique for such rectified scheduling is to let the local
scheduler in each node reserve the dedicate core for
concurrent checkpointing. It can be realized easily by means
of the CPU affinity library or taskset Linux command
(which is adopted by our AIC implementation).

III. MULTI-LEVEL CONCURRENT CHECKPOINTING
This section treats multi-level concurrent checkpointing,

with Section III.A-B laying the groundwork of the Markov
model established in Section III.C. Section III.D presents
numerical results, comparing our static concurrent model
with its earlier Moody’s counterpart [11]. Based on obtained
results, we can reach the appropriate adaptive checkpointing
decision, as outlined in Section III.E.

A. Assumptions and Definitions
Checkpointing is done transparently, without explicitly

requested by applications [6, 21, 23]. This article assumes
failure inter-arrival times to follow an exponential
distribution with the rate of � over time, as commonly found
in earlier work [4, 21, 23, 24]). Additionally, failures are
assumed to be independent [11, 21, 23] and to possibly
happen at any time (even during process recovery). Once it
occurs, a failure is detected by a diagnostic mechanism (not
treated in this article). Failure types are detailed next.

The transient failures (e.g., intermittent failures [3] and
faults due to external interferences like alpha particles and
neutron) can be recovered by re-running the application on
the same core. On the other hand, permanent faults can
result in partial node failures or total node failures. A partial
node failure in a multicore node damages some cores but
leaves one or multiple operational cores for application
recovery on the node, whereas a total node failure brings
down all its cores and also causes its local disk to become
unavailable. Any application run on a totally failed node can

0

0.4

0.8

1.2

0 10 20 30 40 50 60
Checkpoint Time (s)

No
rm

al
iz

ed
 V

al
ue

Sjeng-dLat
Sjeng-dSize
Lbm-dLat
Lbm-dSize
Bzip2-dLat
Bzip2-dSize

Fig. 2. Normalized delta latency and delta size of three SPEC benchmarks
(Sjeng, Lbm, and Bzip2) obtained using our testbed (detailed in
Section V) when taking the next (incremental) checkpoint at
different points of time over a 60-second interval. The outcomes are
normalized over respective benchmark’s latency/size means in the
interval.

TABLE 1. LANL SYSTEM CHARACTERISTICS

System
ID

System
Type

of
nodes in

logs

of cores
per node

% of
candidate

jobs

% of candidate
jobs after

rescheduling
15 NUMA 1 256 50% 50%
20 Cluster 256 4 17% 32%
23 Cluster 5 128 77% 78%
8 Cluster 164 2 47% 75%

16 Cluster 16 128 41% 42%

99

be recovered only when the checkpoints of the application
are kept remotely (either at remote storage or remote group
of nodes for use to resume its execution). Similar to prior
work [11], we assume an infinite pool of spare cores. This
assumption is likely to hold since real jobs often allocate
extra cores and the repair rate is higher than the failure rate.

The system has multiple checkpoint levels via different
checkpointing means. We denote level-k checkpoint as Lk.
Let ck be the checkpoint latency of Lk and rk be the recovery
time of Lk. Level-k failure is denoted by fk, with an arrival
rate of �k. Note that summation of all �k’s equals the system
failure rate �. A higher level checkpoint can recover all
lower-level failures. Being the most basic checkpoint
operation, L1 is embedded in all higher-level Lk, for k>1.
Incremental checkpointing or delta compression can be
applied to reduce ck. In Section III.B-D, the static model is
assumed, where all ck and rk are constant. This assumption is
relaxed in Section III.E for adaptive checkpointing.

An example multi-level checkpointing system has been
considered recently [11], with three levels involved, as
follows. The local checkpoint L1 has a latency of c1, equal to
the time for writing a checkpoint to the local disk or
memory. In the case of MPI programs, c1 also includes the
time for coordinated checkpointing, where all in-flight
messages and synchronization are properly handled. Let L2
be the remote checkpoint to a RAID-5 group of nodes, while
L3 be the remote checkpoint to remote storage. Since L2 and
L3 must inherently execute L1 at the beginning, their
latencies equal c1 plus the time to send checkpoint over the
network (to a RAID-5 group or remote storage). In our
model, each constituent node of a networked system at hand
includes multiple cores, with at least one core pre-allocated
for supporting remote checkpoints. A local checkpoint is
always followed immediately by one or multiple remote
checkpoints. Relevant notations are listed in Table 2.

B. Process Execution

A base process execution time, t, refers to the time for its
execution in the absence of checkpointing or failures.
However, actual process execution usually involves
checkpoints, say n of them, during the course of its
execution. Within the checkpoint interval i in our concurrent
model, for 1 � i � n, (1) the process does its actual work (for
w seconds, dubbed work time span), (2) the system performs
local L1 checkpoint sequentially, requiring the process to
halt its execution until L1 has been completed, and (3) the
system initiates remote checkpoint (L3 or both L2 and L3)
concurrently at the checkpointing core when the process is
being executed on separate cores. Fig. 3(a) illustrates an
interval of process execution for the 3-level concurrent
model (composed of L1, L2, and L3). Since at the end of
Block c1, the checkpoint file is already generated, L2 and L3
can initiate checkpoint transfer immediately, yielding the
latencies of c2-c1 and c3-c1. Note that Blocks c2-c1 and c3-c1
refer to execution instances on the pre-allocated
checkpointing core. As only one available checkpointing
core is assumed, our model does not initiate any L1 until the
last L3 has finished. Should a failure occur, the system
resumes job execution at the latest recovery point, with its
restart time determined by the checkpoint type chosen (e.g.,
r1, r2, or r3).

In contrast, the Moody model performs multi-level
checkpointing sequentially (as depicted in Fig. 3(c)). It is
governed both by work time span w and by parameter nk,
which indicates how many level-k checkpoints are taken in
between level-k+1 checkpoints. The Moody model restarts
the checkpoint from the latest checkpoint able to recover
from the arising failure.

C. Markov Model for Concurrent Multi-level Checkpointing
We evaluate the expected runtime of the checkpoint

interval of multi-level checkpointing using the Markov
model, which is a directed-edge graph representing states
and state transitions. The state is annotated with the time
spent in that states if no failure occurs. Each edge is
associated with (1) the probability of state transition on that
edge, and (2) the expected time spent in the old state before
transition into the new one. In a general form, each state has
up to k+1 edges, one corresponding to the success case, and
the rest corresponding to k recovery states when a level-k
failure, fk, occurs. Since the time between failures follows an
exponential distribution, the edge-associated values (i.e., the
transition probability and the expected time spent) can be
calculated. Once the model is constructed, the formula for

TABLE 2. RELEVANT SYMBOLS

Symbol Definition
t Base process execution time
T Total expected runtime

Tint Expected runtime of an interval
NET2 Normalized expected turnaround time

ck Checkpoint latency of level-k checkpoint
rk Recovery time of level-k checkpoint
fk Level-k failure
�k Level-k failure rate
� System failure rate
nk Moody’s parameter for level-k checkpoint
w Work time span

wL
* Local optimum work time span

Bk Estimated bandwidth of level-k checkpoint
dl Delta latency
ds Delta size

Note: The additional subscript (i) denotes the parameter value during
checkpoint Interval i.

w c1

c2-c1 c3-c1
w c1

c3-c1

 (a) Concurrent checkpoint model (b) L1L3 model

w c1 c2w w c1 c2w w c1 c3w

(c) Moody sequential model with n0=1 and n1=2
Fig. 3. An interval of process execution under concurrent and sequential

3-level checkpoint models. The shaded block represents time spent
for actual work. Note that work time spans w in (a), (b), and (c) are
not necessarily identical.

1010

calculating expected runtime of the checkpoint interval can
be obtained by solving a set of linear equations [21]. We
also apply simplification technique [12] to merge edges and
states in our model.

While the system under consideration is equipped with
three checkpointing levels, in practice, it may enable only
one or two checkpointing levels. To be specific, we
construct the Markov model for a networked system with (1)
L1 and L3, (2) L2 and L3, and (3) L1, L2, and L3, denoted by
L1L3, L2L3 and L1L2L3, respectively, as illustrated in Fig. 4.
Note that L3 is always enabled to avoid restarting from the
process beginning. Process execution of an interval in L1L3
model is presented in Fig. 3(b). The process running in w
and c1 intervals in Fig. 3(b) is denoted by State 1, labeled by
a shaded square, in Fig. 4(a). If no failure occurs during the
whole w+c1 interval (corresponding to the black arrow),
State 2 (c3-c1) is entered, where L3 starts a remote checkpoint
to remote storage concurrently. If L3 succeeds, the process
finishes its execution for the current interval. Note that at the
end of Block c1, L1 successfully generates a checkpoint file,
which includes the application state at the end of Block w.
After that, L3 sends this generated file to remote storage
concurrently while the main process continues its execution
for c3-c1 seconds. If any failure occurs before the next L1
checkpoint, the process must rerun this lost execution. Next,
let us consider two failure edges leaving State 1. Since L1L3
enables only L1 and L3 checkpointing, f2 must be recovered
by L3 checkpoints (i.e., State 4). Once the recovery state
succeeds (from State 3 or 4), the application must rerun the
unsaved work (State 5) before returning to State 1. If a
failure occurs during these states, it moves to State 3 or 4
accordingly. Let us consider the failure arising in State 2. In
this case, L1 checkpoint is already saved. If f1 occurs, the
application moves to State 6 and then starts over at State 2.
However, if f2 or f3 occurs during State 2 or 6 (where L3 has
not finished), the application must restart from the old L3
checkpoint files, forcing it to enter State 4 and then rerun
State 5 (c3-c1 of the previous interval) afterwards.

Note that transition from State 1 to State 2 acts as if the
application has two independent tasks running on different
cores, one for its execution and the other for L3
checkpointing, where the failure might occur to any of those
two tasks. Since the tasks are independent, the overall
expected runtime is the maximum of the two. In addition,
recovery from a failure at the checkpointing core does not
require entering State 5. As a result, the expected runtime of
the application over segment c3-c1 in Fig. 3(b) is always

greater than that of the L3 process, enabling us to simplify
the model as presented in Fig. 4(a).

The models for L2L3 and L1L2L3 are derived similarly.
Figs. 4(b) and 4(c) present the constructed models where all
state transitions to the same states are merged. Given w, �1,
�2, �3, c1, c2, c3, r1, r2, and r3, the expected runtime of the
interval, Tint, can be calculated. Finally, the total expected
runtime of the application, T, is the summation of all interval
expected runtimes. Our performance metric of interest is the
normalized expected turnaround time, NET2, defined as

,2 tTNET =
where T is the application total expected runtime and t is its
base process execution time. NET2 gives the estimation of
how much longer the application is expected to run in the
system versus its base runtime. Our goal is to find the lowest
NET2 value by varying work time span w. This can be done
numerically, like in earlier work [11, 21].

D. Numerical Results for Static Concurrent Checkpointing
We compare the performance of our static concurrent

multi-level checkpointing with that of the Moody model
pursued recently [11]. System and application profiles used
for deriving our numerical results are taken directly from the
prior work [11], as briefly described below. The application
is pF3D, an MPI program for laser-plasma simulation, which
requires 1-GB memory per process. The system of interest
is the Coastal cluster, which has 1024 nodes, with �1=2×10-7,
�2=1.8×10-6, and �3=4×10-7. Its L1 is a coordinated
checkpoint to RAM disk with c1 = 0.5. L2 writes checkpoints
to the main memory of a RAID-5 group of nodes with c2 =
4.5. L3 performs checkpointing to the Lustre distributed file
system, with c3 = 1052. Each recovery time rk is set to equal
ck. Taken from [12], the Moody model code explores its
variables, searching for the optimal one, which yields the
highest efficiency possible. In fact, this metric of efficiency
is the inverse of our metric of interest, NET2, which is
believed to better reflect job execution behavior. The same
set of � and c parameters is used in our concurrent model to
search for lowest NET2 by varying w.

We obtain results for pF3D job execution under different
system size scaling, which signifies anticipated future
systems with more nodes and cores. The system size affects
MPI applications in two ways. First, the I/O bandwidth to
remote storage is more congested as the size grows, i.e., c3
increases proportionally. By contrast, c1 and c2 are expected
to remain unchanged since their corresponding bandwidth
amounts are expected to grow with the system size. Second,

w+c1 c3-c1

r1 r3

c3-c1

r1

w+c1 c2-c1 c3-c1w+c2 c3-c1

r2 r3

c3+c2-
2c1

r2+c2-
c1

r1 r2 r3 r1 r1 r2

c3+c2-
2c1

c2-c1

1 2

3 4

5

6

success
fk=1
fk=2,3

fk=1,2
fk=3

fk=2

fk=1,2,3

 (a) L1L3 Model (b) L2L3 Model (merged) (c) L1L2L3 Model (merged)
Fig. 4. Proposed Markov model for multi-level concurrent checkpointing, with each edge representing possible state transition. For simplicity, all edges that

point to the same state are merged in (b) and (c).

1111

the failure rate is to increase proportionally since a failure of
any MPI process fails entire job execution. Fig. 5 illustrates
NET2 of pF3D under various concurrent checkpoint models
versus the Moody model. It shows that L2L3 and L1L2L3 are
very closed to each other consistently, always yielding the
lowest NET2. This suggests that L2L3 is preferred over
L1L2L3 since L1 does not add any measurable benefit and can
be dropped. Interestingly, Moody’s optimal results also
accommodate only L2 and L3 without incurring L1. The
degree of NET2 improvement for L2L3 (compared with the
Moody results) rises as the system size grows, until it
reaches 10×, mostly due to increases in the failure rate and
c3. On the other hand, L1L3 incurs much more NET2 at large
system sizes. This is because L1L3 must recover all f2
failures (which account for the most frequent failures with �2
equal to 1.8×10-6) from level-3 checkpointing whose latency
c3 is higher in a large system, involving much bigger
overhead than with level-2 checkpoints. As can be seen in
Fig. 5, NET2 improvement under L2L3 almost disappears at
the size of 20×, where the system then experiences exceeding
overhead due to frequent leave-3 recovery which
overwhelms L3, the Lustre distributed file system [11].

Next, we study the effect of concurrent checkpointing for
RMS applications, which require limited inter-process
communications. In this case, the system size has little effect
on the failure rates under RMS applications (RMS for short)
as each process therein can run almost independently. We

assume an RMS application with a similar profile as that of
pF3D (such as the memory footprint size and the number of
processors) upon its execution. As revealed in Fig. 6, our
concurrent checkpoint models always outperform the Moody
counterpart for RMS. Again, L2L3, and L1L2L3 have very
close outcomes, yielding the lowest NET2. The improvement
gaps between L2L3 and its Moody counterpart expands as the
system size scales up. Hence, concurrent checkpointing is
demonstrated to benefit both MPI and RMS application, with
L2L3 yielding nearly the best NET2. Given its lower
complexity (better suitable for online decision of AIC) than
that of L1L2L3, L2L3 will be our focus for the remainder of
this article, aiming to support RMS program execution.

While idle cores are likely to present in real systems (as
detailed in Section II.C), they may be scarce in many
situations, requiring one idle core to cover multiple active
computation cores which execute application processes. We
define sharing factor (SF) as the number of computation
cores that share one checkpointing core. We assume the
worst case of sharing where all sharing processes ask for the
checkpointing core to handle their checkpoints at exactly the
same time, with checkpointing core resources (such as I/O
bandwidth) shared evenly. Fig. 7 illustrates L2L3
performance under different SF values and system sizes.
Moody’s NET2 results are also added for gauging how many
cores can be shared while concurrent checkpointing still
outperforms the Moody counterpart. As can be found in Fig.
7, L2L3 is still profitable when 3-15 processes share one
checkpointing core under 1×-20× system sizes.

E. Adaptive Incremental Checkpionting (AIC) with Delta
Compression
The treatment so far assumes that c1, c2, c3, r1, r2, and r3

are constant, with the model searching for the optimal work
span w* to yield the lowest NET2 (normalized expected
turnaround time). However, when incremental checkpointing
and delta compression are applied to reduce overhead, the
checkpoint latency may vary greatly (as shown in Section
II.B), signifying good opportunities for further overhead
reduction by taking checkpoint adaptively at desirable points

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1x 5x 10x 20x
System Size

N
ET

^2

L1L2L3

L2L3

L1L3

Moody

Fig. 5. NET2 (normalized expected turnaround time) of the MPI program,
pF3D, under various system sizes.

0.9

1.0

1.1

1.2

1x 5x 10x 20x
System Size

N
ET

^2

L1L2L3

L2L3

L1L3

Moody

Fig. 6. NET2 of RMS under various system sizes.

1

1.04

1.08

1.12

1.16

1.2

1 3 7 15 31 63
Sharing Factor

N
ET

^2

L2L3_1x L2L3_5x L2L3_10x
L2L3_20x Moody_1x Moody_5x
Moody_10x Moody_20x

Fig. 7. NET2 of L2L3 under different sharing factor (SF) values and
system sizes for RMS applications.

1212

of time. In this case, the selected work time span, checkpoint
latencies, and recovery times at each interval are varied.

Our Adaptive Incremental Checkpionting (AIC) requires
an enhanced prediction model to capture dynamics. Given
the two-level concurrent model of L2L3 is sufficient for
obtaining near-optimal NET2 (as demonstrated earlier), we
enhance L2L3 to arrive at a non-static multi-level concurrent
checkpoint model. To this end, the subscript (i) is added to
variables for indicating their values at Interval i. For
example, ck(i) is the level-k checkpoint latency at Interval i.
Fig. 8 illustrates the AIC model for Interval i, where those
states that are different from L2L3 are marked in grey. The
grey states involve parameters from Interval i-1 since
Interval i uses checkpoints produced therein.

The formula for calculating the expected runtime of the
checkpoint interval Tint can be obtained, although the optimal
work span w* has no closed form. Instead of exploring the
whole search space (like an offline algorithm [11, 21], which
may take several minutes to finish), we follow the Extreme
Value Theorem to search for a local optimum work time
span, wL

*, by comparing NET2 at both search boundaries and
one local point with �(NET2)/�w = 0 (zero derivative)
obtained via the Newton-Raphson (NR) approximation
method. Our NR returns a point for comparison after it
either reaches desired precision or iterates 200 times,
involving O(1) complexity. In general, AIC requires less
than 5 NR iterations in our experiments, incurring low total
overhead (< 3%; detailed in Section V).

Our AIC examines periodically the estimated checkpoint
latency (i.e., ck(i)) to decide if a checkpoint should be taken.
At a decision time, AIC calculates wL

* from the current ck(i)
and other constant parameters. If wL

*
 is smaller than the

current interval elapsed time, AIC takes a checkpoint
immediately. Subsection IV.D provides details of AIC
prediction on the checkpoint latency, ck(i). NET2 under
varying parameters can be expressed by

,
1)int(

2 tTNET n

i i� =
=

 (1)

where Tint(i) is the expected runtime of Interval i.

IV. DESIGN AND IMPLEMENTATION DETAILS
AIC seeks to meet two design goals: (1) low overhead,

thus calling for lightweight strategy or offloading tasks to
separate cores, and (2) usability, suitable for applications
with any memory footprint on diverse machines without
profiling or code-intruding. Fig. 9 outlines AIC key
components detailed as follows.

Periodically, AIC Predictor makes its prediction from
monitored lightweight metrics. The predictor does not need

any profiling, able to adjust its prediction model online based
on feedbacks from other components. Given predicted data,
AIC Checkpoint Decider may spawn the Incremental
Checkpointer to get a checkpoint, which would be delta
compressed by the page-aligned Delta Compressor launched
on the dedicated core. The measurements of predicted value
(e.g., delta latency) are sent back to the predictor for its
model update. Finally, the delta files are sent over the
network to the RAID-5 Group (under L2 checkpointing) and
Remote Storage (under L3 checkpointing), where the system
may use them to restart the application. While Predictor,
Checkpoint Decider, and Incremental Checkpointer are
executed on the Computation Core (together with the
application, see Fig. 9), the delta compressor and remote
chekcpointer are run concurrently on a dedicated core
(dubbed Checkpointing Core) for low time overhead.

A. BLCR and Xdelta3
We have modified Berkeley Lab Checkpoint/Restart

(BLCR, a checkpointing implementation for high-
performance applications in Linux) [8] to arrive at AIC.
Additionally, a page-aligned delta compressor, Xdelta3-PA,
has been developed to enable AIC. BLCR consists of kernel
modules, shared libraries, and a set of command-line tools.
Application codes must be compiled with the BLCR shared
library. We use BLCR version 0.8.2, which does not support
incremental checkpointing. Originally based on Rsync
algorithm [20], Xdelta3 is a delta compressor that hashes
blocks of source data and uses the hash table to identify the
longest match in target data. Our Xdelta3-PA is derived
from the Xdelta3 (version 3.0y) library.

B. Incremental Checkpointing and AIC Portability
We have enhanced BLCR’s kernel modules and shared

libraries to support incremental checkpointing via the Unix
mprotect() system call for collecting the list of dirty pages
during each checkpoint interval. The mprotect() system
call lets a program set its memory page protection from
writing. If the program attempts to modify such a page, the
page-fault signal is raised and can be caught by the signal
handler. At the beginning of each checkpoint interval, AIC
write-protects target pages in process address space. Each
first writing attempt to a protected page (1) triggers the
signal handler to add the page to the dirty page list and (2)
unprotects the page. AIC kernel module then uses this dirty
page list to write modified pages into the checkpoint.

In regard to its portability, AIC inherits BLCR’s support
for wide-ranged architectures (i.e., x86, x86_64, PPC/PPC64
and ARM) on Linux. Lk can be easily setup and reconfigured
via environmental variables. AIC additionally deploys its

w(i)+c2(i) c3(i)-c1(i)

r2(i-1) r3(i-1)

c3(i-1)+c2(i-1)
-2c1(i-1)

r2(i)+c2(i)-c1(i)

success
fk=1,2

fk=3

Fig. 8. Non-static multi-level concurrent checkpoint model of Interval i.

Predictor Checkpoint
Decider

Incremental
Checkpointer

Page-aligned
Delta

Compressor

spawn
provide

prediction

spawn
1

generate
Checkpoint

files

read

AAA
Delta files

feedback

feedback
generate

send

Computation
Core

Checkpointing Core

Remote
Storage

RAID-5
Group

Fig. 9. AIC key components in networked multicore system.

1313

own signal handlers for page faults and alarms, invalidating
any application that also uses these signals. However, we
found that they are rarely used in our target processor-
memory intensive applications such as SPEC and RMS.

C. Page-aligned Delta Compression
AIC uses Xdelta3-PA (page-aligned delta compression)

to difference each dirty page in the current checkpoint
against its previous version, if existing in the previous
checkpoint, for a smaller checkpoint footprint. Other data,
such as CPU states, process linkages, and opened file
descriptors, constitute a minor fraction of the checkpoint file
and are thus not compressed. While applying delta
compression between two entire checkpoints might yield
smaller footprint sizes in certain cases, our Xdelta3-PA,
being page-aligned, is indispensable because it enables our
checkpoint latency predictor to estimate the delta
compression cost on the per-page basis.

Let a hot page be the dirty page of the current interval
which was also modified during the previous checkpoint
interval. Xdelta3-PA performs delta compression only
between hot pages and their corresponding old pages in the
previous checkpoint. In addition, the order of memory
contents resided in checkpoint file is rearranged in support of
fast compression by Xdelta3-PA, running concurrently on
the checkpointing core by means of the taskset Linux
command for low overhead.

In contrast to performing in-memory delta compression
before writing delta to the disk found previously [19], AIC
performs delta compression (as a part of remote checkpoint
mechanism) after it writes an incremental checkpoint to the
local disk. The rationale is that doing delta compression on-
the-fly requires buffering the contents of every old page in
the previous checkpoint, leading to excessively high memory
overhead for large applications.

D. AIC Leightweight Predictor
AIC predicts values necessary for its checkpointing

decision (i.e., c1(i), c2(i), and c3(i), see Table 2). The predictor
for use must be fast to allow fine-grained prediction online
(e.g., one prediction per second). Also, no profiling should
be required for high usability and wide applicability. AIC
predictor achieves these goals by means of Stepwise
regression [13] and Online prediction [1], with lightweight
metrics easily computed from gathered measures of taken
checkpoints during code execution.

The essence of AIC prediction is to relate a target
variable y to n predictor variables, defined as an n-
dimensional vector, x. Given N candidates for predictor
variables, for N � n, stepwise regression [13] selects which
of them to include in the linear model. AIC starts by
obtaining four samples to permit stepwise regression with up
to three variables (i.e., n = 3) plus their initial weights for the
prediction model. Its online prediction then adjusts the
model weights for subsequent prediction use by adopting a
normalized version of Gradient Descent algorithm [1].

Target Variables and Lightweight Metrics. As stated
above, target variables of AIC predictions are c1(i), c2(i), and

c3(i). Given delta latency, dl(i), and delta size, ds(i), at ith
checkpoint, c2(i) can be calculated by

,2)()()(2 Bdsdlc iii +=
where Bk is the bandwidth of level-k checkpoint. The
second term is the time required for transmitting delta to
RAID-5 group. Since delta compression has been done by
L2, level-3 checkpoint latency, c3(i) can be calculated by

.3)()(3 Bdsc ii =
Bk of each level is assumed to be known a priori. Hence,
target variables for predictor model are c1(i), dl(i), and ds(i).

Metrics related to the AIC predictor are derived easily
from gathered measures of taken checkpoints include the
number of dirty pages (DP), elapsed time since the last local
checkpoint (t(i)), Jaccard Distance (JD) [9], and Divergence
Index (DI) 1. Stepwise regression chooses some of those four
metrics plus their composites appropriately to form the
desirable AIC predictor for a given code after its very first
checkpoint. Precisely, with � = {DP, t(i), JD, DI}, stepwise
regression considers the candidate metrics in {C1

�C2
� | C1, C2

∈ �, 1� � + � � 2} for inclusion in the AIC predictor.
Jaccard Distance JD(P, P') represents the degree of

dissimilarity between a hot page P and its old version P'
resided in the previous checkpoint, as

),(1)',(pmPPJD −=
where p is the page size and m is the number of bytes in P
whose values are equal to those located at corresponding
addresses in P'. Next, Divergence Index DI(P), which
measures self-dissimilarity of a hot page P, is given by

),(1)(pvPDI −=
where v is the number of occurrences of the most popular
value in Page P, and p is the page size. In general, JD (or
DI) measures the degree of inter-page (or intra-page)
dissimilarity. The strength of these two metrics lies in their
simplicity for fast calculation. Their values are also
normalized, ranging from zero (totally identical) to one
(totally different). To lower computation complexity, the
AIC predictor calculates the mean of JD (or DI) for only
selected hot pages (whose selection process is stated next).

E. Hot Page Selection
The arrival time of a hot page P is defined as the first

time in the current checkpoint interval that a write to an
address within P is made. AIC groups hot pages based on
their arrival times, assigning two hot pages in different
groups if their arrival times apart beyond a threshold Tg. To
limit its space and time overhead, AIC buffers only the first
hot page of each group in a fixed-size Sample Buffer (SB)
for JD and DI computation. It also adjusts Tg in an attempt
to hold as many samples as possible in SB at the decision
time. This is achieved by doubling (or halving) Tg if SB is
full (or more than half empty). Pages in SB are dropped
accordingly if SB is full.

1 We also examined other relevant metrics stated in the literature, like
Cosine Similarity and the qualitative variation index M2 [5]. As those
metrics were found to be closely similar to JD and DI under our target
applications, we adopted JD and DI due to their low computational costs,
with the computation time of a hot page below 100 �s.

1414

V. EXPERIMENTAL EVALUATION AND DISCUSSION
Experimental evaluation has been performed on our

testbed using benchmark codes to assess the delta
compressor and to compare AIC with both the non-adaptive
counterpart and state-of-the-art multi-level checkpointing
(i.e., Moody’s model [11]). Based on experiment results, we
have the subsequent findings:

• AIC enjoys better reduction in the normalized
expected turnaround time (NET2, by up to 47%) in
comparison to its non-adaptive counterpart, while
incurring negligibly low runtime overhead (by less
than 2.6%),

• Concurrent checkpointing (either static or adaptive)
with size reduction techniques yields substantial
drops in NET2 when compared to the earlier Moody
model, and

• our page-aligned delta compressor (Xdelta3-PA)
enables online checkpoint decision (as detailed in
Section IV.C), observed to have similar compression
performance (in terms of file size reduction and
execution latency) as a conventional compressor
(Xdelta3).

A. Experimental Testbed
Hardware and System Software. Our experiment

testbed consists of a Dell PowerEdge R610, with two quad-
core Xeon E5530 processors running at 2.4 GHz and having
8-MB shared cache. Running CentOS 5.5 64-bit with 2.6.18
kernel, the testbed contains 32 GB of physical memory (with
the page size of 4096 bytes) and one 7200-RPM SATA disk.

Three different types of multi-level checkpointing
software are installed for the experiment:

• Moody: modified BLCR which periodically does
full checkpoints without delta compression. The
checkpoint interval is calculated using the Moody
multi-level checkpoint model [11].

• SIC (Static Incremental checkpointing with
Compression): modified BLCR which periodically
does incremental checkpointing, with delta
compression performed between two successive
checkpoints. The checkpoint interval is computed
by our L2L3 concurrent multi-level checkpoint model
presented in Section III.C.

• AIC: our adaptive checkpointing mechanism.
Both Moody and SIC require the average checkpoint

latency beforehand to calculate their optimal checkpoint
intervals, while AIC gathers its prediction information online

using stepwise regression. The delta compressor and remote
checkpointing under SIC and AIC are conducted on a
separate idle core to avoid penalizing application execution.
Hence, the sharing factor (defined in Section III.D), is
always 1.

Applications and Setup. The target applications include
six benchmarks from SPEC CPU2006 benchmark suites
listed in Table 3. Each of them is the processor-memory
intensive benchmark fitting in 1-GB memory. Those
benchmarks are chosen as representative RMS applications.
The terms of application and benchmark are used
interchangeably.

SPEC provides a framework to run its benchmarks and to
measure the results. We compiled SPEC applications with
one of three checkpointing libraries (Moody, SIC, AIC)
separately for comparison. During application execution, the
following measures are gathered in each interval: L1
checkpoint latency (c1(i)), checkpoint size, delta latency
(dl(i)), and delta size (ds(i)). The latencies for remote
checkpoints (L2 and L3) are calculated from the checkpoint
(or delta) size and predefined bandwidth amounts (B2 and
B3). Fig. 10 shows AIC setup with its delta compressor and
remote checkpointing handled by a separate core. While the
incremental checkpoint file 1 and the delta file A are
produced under AIC, the measures of l(i), dl(i), and ds(i) are
gathered in the (physical) compute node. Being simulated
components, L2 and L3 do not exist physically, permitting
our evaluation on various system characteristics (similar to
[12]). Like in Section III.D, our base system is the Coastal
cluster [11] with 1024 nodes. Its L2 bandwidth, B2, equals
483 GB/s. The aggregate bandwidth of 1024 nodes for
writing files to the Lustre distributed file system amounts to
2.1 GB/s. Hence, its L3 bandwidth per node, B3, is 2 MB/s.
This reflects Lustre performance when there are 1024 nodes
concurrently writing, regardless of application types (MPI,
RMS, or Sequential programs).

B. Page-aligned Delta Compression
For comparison, we run SIC with Xdelta3 and Xdelta3-

PA executed on the checkpointing core. The mean delta
latency and file size results under both compression methods
were calculated for each benchmark. Let the mean
compression ratio of a benchmark refers to its average

Process Delta
Comp.

1 0 A

Computation
Core

Checkpointing
Core

Local Disk
c1(i)

RAID-5 Group
of NodesSimulated

Remote
Storage

L2
Checkpoint

L3
Checkpoint

dl(i)
ds(i)

B2

B3

with parameters
from [11]

Fig. 10. Testbed setup composed of physical and simulated
components, with simulated ones shown in the shaded area.

TABLE 3. TARGET SPEC BENCHMARKS WITH THEIR PERFORMANCE METRICS

Benchmark

Base
execution

time, t
(seconds)

Delta compressor performance
AIC

Execution
time (seconds)

Compression
Ratio

Delta Latency
(seconds)

Xdelta3 Xdelta3
-PA Xdelta3 Xdelta3

-PA
Bzip2 152 0.63 0.66 1.7 0.9 156 (2.6%)
Sjeng 661 0.51 0.66 10.6 17.2 670 (1.4%)

Libquantum 846 0.65 0.51 1.5 3.0 853 (0.8%)
Milc 527 0.94 0.79 79.8 52.5 533 (1.1%)
Lbm 462 0.91 0.90 63.2 56.9 467 (1.1%)

Sphinx3 749 0.14 0.27 0.12 0.05 754 (0.7%)

Note: The base execution time refers to the application execution time
without checkpointing or any failure. Numbers in parentheses denote
percentages of execution time increases over base execution times.

1515

compressed delta size to its mean uncompressed checkpoint
size. It is desirable to lower the delta latency (for faster
operations) and the compression ratio (for smaller file sizes)
as much as possible. Table 3 shows compression
performance metrics (i.e., compression ratios and delta
computation latencies) of Xdelta3 and Xdelta3-PA for six
benchmarks. As can be seen, the compression performance
results of Xdelta3 and Xdelta3-PA are mostly close to each
other for a given benchmark, yielding comparable file size
reduction and delta computation times. Note that Xdelta3
cannot support online checkpoint decision necessary for AIC
(as detailed in Section IV.C) and also that delta compression
is carried out concurrently on a separate (dedicated) core
without penalizing the regular job execution time.

C. AIC Results and Discussion
Experiments have been conducted to assess the

performance of AIC, for comparison with its static
counterpart (SIC) and the state-of-the-art multi-level
checkpoint model (Moody). Our performance metric of
interest is normalized expected turnaround time (NET2,
which denotes the expected turnaround time normalized by
its base runtime). NET2 value ranges from 1.0 to 	 and is
desirable to be held as close to 1.0 as possible.

AIC in our evaluation makes a checkpoint decision every
second, with 8-MB Sample Buffer (SB). The delta
compressor of Xdelta3-PA is adopted by AIC and SIC.
Since our benchmarks are short-lived (with the longest base
execution time of 846 seconds), we set unusually high failure
rates to be able to collect experimental data (since otherwise,
no failure is to happen in the course of job execution). In
this experiment, we let the failure rate � equal 1.0×10-3. As
wide swings in the delta latency and the size of target
benchmark are observed (see Fig. 2), we expect that long
running applications with such large swings would especially
benefit from adaptive checkpointing. Each level-k failure
rate, �k, is calculated in proportion to the rates under the
Coastal system (i.e., 8.3%, 75%, and 1.67% for �1, �2, and �3,
respectively [11]). Other parameters of the Coastal system
are described in Section V.A. NET2 outcomes of AIC and
SIC are calculated by Eq. (1) given in Section III.E, while
those of Moody is obtained from the code taken from a
public source [12].

 Fig. 11 compares NET2 outcomes of AIC, SIC, and
Moody under six target benchmarks, where the multi-level
concurrent checkpoints (AIC and SIC) are seen to yield
markedly better NET2 values over those of Moody. The
NET2 reduction amount under AIC depends on applications,
ranging from 8.5% (Sphinx3) to some 40% (Milc). In
addition, NET2 is always less under AIC than under SIC, and
the gap is larger for applications with higher NET2 (i.e., Milc
and Lbm). Note that all AIC and SIC results presented in
this section are with sharing factor (SF) = 1, (i.e., there is one
dedicated core for concurrent checkpointing and delta
compression).

Next, the effect of the system size is examined. As
described in Section III.D, when the processes of a program
involve limited communications, the system scale has little

impact on the failure rate but has a proportional effect on the
bandwidth per node available to remote storage (i.e., B3). B2
remains unchanged since it scales with the system size. As
illustrated in Fig. 12, AIC and SIC performance results for
the Milc benchmark are compared over the system scale of
0.25× to 4×, aiming to reveal the effect of adaptive
checkpointing under growing and shrinking system sizes.
Clearly, the NET2 difference gap widens when the system
grows (from 14% to 47%). While not shown here, Sphinx3
exhibits the least reduction for AIC versus SIC over same
scaling, by less than 0.5% at 4×. This is due to the extremely
small file size of Sphinx3 (in an order of half MB), not large
enough to have a measurable benefit for delta compression
and its adaptive companion. NET2 reduction amounts under
other benchmarks lie within the range between those of Milc
and Sphinx3.

The benchmark execution times under AIC are listed in
Table 3, revealing AIC execution time overhead to range
from 0.7% to 2.6%. Note that this is the pure overhead when
there is no failure present, mostly due to the AIC Predictor
and Checkpoint Decider. When failures do occur in practice,
the overhead time is included in NET2 results demonstrated
in Figs. 11 and 12. AIC indeed reduces the expected
turnaround time, when compared to its static counterpart and
best known (Moody) multi-level checkpointing [11].

0

0.5

1

1.5

2

2.5

3

0.25x 0.5x 1x 2x 4x
System Size

N
ET

^2

AIC

SIC

Fig. 12. NET2of Milc under adaptive and static concurrent checkpoint
scheme.

0

0.5

1

1.5

2

Bzip2 Sjeng Lq Milc Lbm Sphinx3
Benchmark

N
ET

^2

AIC

SIC

Moody

Fig. 11. NET2 (normalized expected turnaround time) of six
benchmarks under AIC, SIC, and Moody.

1616

VI. PRIOR WORK
In past decades, several techniques for checkpointing

have been pursued, aiming to reduce execution overhead and
increase system availability and reliability. Meanwhile, on-
line delta compression has been treated as well. Brief
reviews on previous checkpointing and delta compression
work are provided below in sequence.

A. Checkpointing
A Plethora of work has been on finding the optimal

periodic checkpoint interval where checkpoint latency is
known a priori [4, 24], calling for profiling before actual job
execution. AIC, however, requires no profiling beforehand.

Based on simulation results, checkpointing which
dynamically ignores application-initiated checkpoints was
introduced [14]. On the other hand, AIC dynamism is
resulted from prediction of the delta file size, able to uncover
better checkpointing times through finer granularity (i.e.,
every second). A variety of adaptive single-level
checkpointing work based on the dynamic checkpoint cost
was considered previously [23, 25], whereas AIC addresses
two-level checkpointing with its cost prediction functions
including such key parameters as delta compression
overheads and network traffic. Unlike [25], AIC does not
assume that the program state changes according to a
stochastic process. Multi-level checkpointing [11, 21]
involves multiple checkpoint types for tolerating different
failure categories. Being a two-level checkpointing
mechanism, AIC employs fast prediction to realize online
checkpoint decision during job execution, in contrast to off-
line decision common to prior multi-level checkpointing.
Hence, AIC soundly outperforms its state-of-the-art multi-
level checkpointing counterpart [11] in terms of NET2.

Effort was attempted earlier to reduce overhead involved
in incremental checkpointing [6, 16]. The model for
concurrent (or forked) checkpointing (which lets the process
continue its execution upon writing the checkpoint file to the
local disk [16]) is presented in [22]. By contrast, our model
supports multi-level checkpointing and adopts concurrent
checkpointing only for the remote levels (to avoid interfering
with computation processes).

B. Delta Compression
Delta compression has been considered to reduce the

checkpoint cost regarding local disk accesses [17, 19],
favoring simple algorithms (like the XOR [19]) to contain its
overhead. As AIC tracks dissimilarity in the working sets to
identify the desirable point with a low compression
overhead, it can afford more aggressive compression [10] for
better compressed results. Unlike an earlier in-memory
compression approach which buffers contents of every
modified page fully [19], our AIC buffers only a small
number of selected pages for its, involving far less space
overhead to permit large applications.

Various delta compressors are devised for version
control, software updates, and remote file synchronization
[20]. Among delta compressors available in the public
domain, Xdelta3 [10] is adopted by AIC because it has the
lowest latency while yielding quality compression results.

VII. CONCLUSION
This article introduces AIC (adaptive incremental

checkpointing), a two-level concurrent checkpointing
mechanism with delta compression for networked multicore
systems. According to our study on production system’s
logs, idle cores often exist for checkpointing use in realizing
AIC. We develop a new multi-level concurrent checkpoint
model, which shows performance improvement when
compared with recent multi-level checkpointing under
various circumstances (i.e., system sizes, application types,
sharing factor). The developed model serves as the basis for
AIC, which further reduces overhead by means of adaptive
checkpointing with delta compression. In support of fast
online prediction without profiling (for predictor
establishment), AIC significantly reduces checkpoint sizes
with only negligible increases in benchmark code execution
times (ranging from 0.7% to 2.6% in comparison to those
without checkpointing at all), according to evaluation results
collected on a real testbed. This leads to lower application
expected turnaround time (by up to 47%), when compared to
its static counterpart with fixed checkpointing intervals. AIC
thus enjoys better execution performance.

ACKNOWLEDGMENTS
The authors would like to thank anonymous reviewers

for their insightful comments. They also thank Adam Lewis
for his discussion on Linear regression. This work was
supported in part by the U.S. National Science Foundation
under Aware Number: CCF-0916451.

REFERENCES
[1] N. Cesa-Bianchi, P. M. Long, and M. K. Warmuth, “Worst-

case quadratic loss bounds for prediction using linear
functions and gradient descent,” IEEE Trans. on Neural
Networks, vol. 7, no. 3, pp. 604 - 619, May 1996.

[2] Y.-K. Chen et al., “Convergence of recognition, mining, and
synthesis workloads and its implications,” Proc. of IEEE, vol.
96, no. 5, pp. 790–807, May 2008.

[3] C. Constantinescu, “Impact of deep submicron technology on
dependability of VLSI circuits,” Proc. Int’l Conf. on
Dependable Systems and Networks (DSN), pp. 205-209, June
2002.

[4] J. T. Daly, “A higher order estimate of the optimum
checkpoint interval for restart dumps,” Fut. Gen. Comput.
Syst., vol. 22, pp. 303-312, 2006.

[5] J. P. Gibbs and D. L. Poston Jr., “The division of labor:
conceptualization and related measures,” Social Forces, vol.
53, no. 3, pp. 468-476, March 1975.

[6] R. Gioiosa, J. C. Sancho, S. Jiang and F. Petrini,
“Transparent, incremental checkpointing at kernel level: a
foundation for fault tolerance for parallel computers,” Proc. of
the IEEE/ACM Int’l Conf. on High Performance Computing,
Networking, Storage and Analysis (SC), pp. 9-23, November
2005.

[7] I. Goiri, F. Julià, J. Guitart, and J. Torres, “Checkpoint-based
fault-tolerant infrastructure for virtualized service providers,”
Proc. of IEEE Network Operations and Management Symp.
(NOMS), pp.455-462, April 2010.

[8] P. H. Hargrove and J. C. Duell, “Berkeley lab
checkpoint/restart (blcr) for linux clusters,” J. Physics: Conf.
Series, vol. 46, pp. 494-499, 2006.

1717

[9] P. Jaccard, “Étude comparative de la distribution florale dans
une portion des Alpes et des Jura,” Bull. Soc. Vaudoise Sci.
Nat., vol. 37, pp. 547-579, 1901.

[10] J. MacDonald, “File system support for delta compression,”
M.S. thesis, Univ. California, Berkeley, May 2000.

[11] A. Moody, G. Bronevetsky, K. Mohror, and B.R. de Supinski,
“Design, modeling, and evaluation of a scalable multi-level
checkpointing system,” Proc. of the IEEE/ACM Int’l Conf. on
High Performance Computing, Networking, Storage and
Analysis (SC), pp. 1-11, November 2010.

[12] A. Moody, G. Bronevetsky, K. Mohror, and B.R. de Supinski,
“Detailed modeling, design, and evaluation of a scalable
multi-level checkpointing system,” Lawrence Livermore
National Laboratory, Livermore, CA, Tech. Rep. LLNL-TR-
440491, July 2010.

[13] W. E. Navidi, Principles of Statistic for Engineers and
Scientists. Columbus, OH: McGraw Hill, 2010.

[14] A. J. Oliner, L. Rudolph, and R. K. Sahoo, “Cooperative
checkpointing: a robust approach to large-scale systems
reliability,” Proc. of the 20th Annual Int’l Conf. on
Supercomputing (ICS), pp. 14-23, June 2006.

[15] Operational data to support and enable computer science
research [Online]. Available:
http://institutes.lanl.gov/data/fdata/

[16] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt:
transparent checkpointing under Unix,” Proc. of Usenix
Annual Technical Conf., pp. 213-224, January 1995.

[17] J. S. Plank and K. Li, “Ickp: a consistent checkpointer for
multicomputers,” IEEE Parallel & Distributed Technology,
vol. 2, pp. 62-67, Summer 1994.

[18] J. S. Plank, K. Li, and M. A. Puening, “Diskless
checkpointing,” IEEE Trans. Parallel and Distributed
Systems, vol. 9, pp. 972-986, October 1998.

[19] J. S. Plank, J. Xu, and R. H. B. Netzer, “Compressed
differences: an algorithm for fast incremental checkpointing,”
Univ. of Tennessee, Tech. Rep. CS-95-302, August 1995.

[20] A. Tridgell, “Efficient algorithms for sorting and
synchronization,” Ph.D. Dissertation, Australian National
Univ., Canberra, 2000.

[21] N. H. Vaidya, “A case for two-level recovery schemes,” IEEE
Trans. Computers, vol. 47, pp. 656-666, June 1998.

[22] N. H. Vaidya, “Impact of checkpoint latency on overhead
ratio of a checkpointing scheme,” IEEE Trans. Computers,
vol. 46, no. 8, pp. 942-947, August 1997.

[23] S. Yi, J. Heo, Y. Cho, and J. Hong, “Adaptive page-level
incremental checkpointing based on expected recovery time,”
Proc. of the ACM Symp. on Applied Computing (SAC), pp.
1472-1476, April 2006.

[24] J. Young, “A first order approximation to the optimum
checkpoint interval,” Communications of the ACM, vol. 17,
pp. 530–531, 1974.

[25] A. Ziv and J. Bruck, “An on-line algorithm for checkpoint
placement,” IEEE Trans. Computers, vol. 46, no. 9, pp. 976-
985, September 1997.

1818

