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Abstract—Checkpointing has been widely adopted in support 
of fault-tolerance and job migration, with checkpoint files 
preferably kept also at remote storage to withstand 
unavailability/failures of local nodes in networked systems.  
Lately, I/O bandwidth to remote storage becomes the 
bottleneck for checkpointing on a large-scale system.  This 
paper proposes an adaptive incremental checkpointing (AIC), 
aiming to reduce the checkpointing file size considerably so 
that its involved overhead is lowered and thus the expected job 
turnaround time drops.  Given production multicore systems 
are observed to have unused cores often available, we design 
AIC to make use of separate cores for carrying out multi-level 
checkpointing with delta compression at desirable points of 
time adaptively.  We develop a new Markov model for 
predicting the performance of such multi-level concurrent 
checkpointing, with AIC performance evaluated using six 
SPEC benchmarks under various system sizes.  AIC is 
observed to lower the normalized expected turnaround time 
substantially (by up to 47%) when compared to its static 
counterpart and a recent multi-level checkpointing scheme 
with fixed checkpoint intervals. 

Keywords—Adaptive checkpointing; delta compression; fault 
tolerance; incremental checkpointing; Markov model; multicore 
systems; two-level checkpointing. 

I. INTRODUCTION 
Checkpointing saves the states of a running process to a 

persistent storage, allowing it to be restarted from that stored 
state (called a checkpoint).  It has been applied successfully 
in support of fault tolerance and job migration essential for 
virtualization and cloud computing [7], in addition to 
facilitating code debugging.  Given a system node usually 
contains multiple cores nowadays, checkpointing and 
execution recovery after failures in the system can be 
handled more diversely and efficiently than can be possible 
in its single-core counterpart.  This article focuses on 
checkpointing in networked multicore systems, aiming to 
reduce its overhead with an aid of multiple cores existing in 
each system node. 

Recent work has shown that checkpointing to remote 
storage in a large-scale networked system is relatively 
expensive but necessary to have acceptable reliability of 
long-running jobs [11], calling for multi-level checkpointing 
able to tolerate various failure/unavailability types.  In 
general, checkpointing overhead is dictated by the 
checkpoint file size due to bandwidth constraints on 
local/remote storages [11, 17, 19].  Given continuing growth 

in the application program footprint, the checkpoint size is 
expected to rise going forward.  Much research has been 
carried out to lower or even hide checkpointing overhead [6, 
16, 18].  One common strategy follows incremental 
checkpointing [6, 16], which saves only modified memory 
pages into the checkpoint.  In addition, delta compression (or 
differencing compression) between successive checkpoints is 
employed to further reduce the checkpoint size. 

Previously, a checkpointing scheme employs simple delta 
compression (like an XOR method) because job execution is 
suspended during the delta compression time.  In contrast, 
our interest here lies in process execution on multi-core 
systems, with a separate core for handling delta compression 
and writing compressed outcomes to remote storage 
concurrently when the process is executed on the other 
core(s).  An idle core is frequently available at each node of 
real-world systems (as demonstrated by computing system 
logs from the Los Alamos National Lab, LANL, in Section 
II), and such an available core is exploited in this work for 
carrying out delta compression and outcome writes to remote 
storage concurrently without suspending job execution 
progress in other active computation cores. As compression 
performance relies on the degree of similarity between two 
consecutive checkpoints, the desirable points of time to take 
checkpoints is paramount in any effective checkpointing 
mechanism (detailed in Section II), usually calling for 
adaptive checkpointing.   This is unlike traditional 
checkpointing which takes checkpoints periodically in an 
equidistant interval computed by averaging checkpoint 
overhead amounts and failure rates to minimize the process’s 
expected runtime [4, 11, 18, 21, 24]. 

Recently, dynamic checkpoint intervals or skipping some 
(fixed) checkpoints have been considered [14, 23], because 
checkpointing overheads and system parameters vary.  This 
article presents design and implementation of adaptive 
incremental checkpointing (AIC) with delta compression 
realized by dedicated cores for networked multicore systems.  
AIC determines the desirable points of time to take 
checkpoints adaptively based on predicted checkpoint 
overhead during execution progress and system parameters.  
It relies on fast prediction governed by Stepwise regression 
[13] and a Gradient Descent algorithm [1] to estimate at fine 
granularity in real time, the overhead of incremental 
checkpointing with delta compression.  Unlike its static 
counterparts treated earlier [4, 11, 21, 24], AIC leverages on 
the fact that the in-memory process contents of a running 
task and those of its previous checkpoints have varying 
degrees of similarity during its execution, dictated by how 
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much the working set is in common to those working sets 
when previous checkpoints were taken.  Hence, it calls for 
estimating the similarity degree during task execution to 
dynamically choose a desirable point of time that yields the 
smallest checkpoint file after delta compression.  AIC differs 
from earlier adaptive checkpointing mechanisms, which are 
unaware of delta compression dynamics, and are realized by 
either skipping certain fixed checkpoints dynamically [14] or 
treating single-level checkpoints without separate cores for 
remote concurrent checkpointing during job execution [23]. 

A multi-process job may involve either a lot of 
communications among its processes during job execution, 
as exemplified by heroic MPI applications, or limited 
communications (typically only at the beginning and the end 
of its execution), such as MapReduce-like jobs and many of 
Recognition, Mining, and Synthesis (RMS) workloads [2].  
For brevity, we refer to these two distinct job types as MPI 
and RMS tasks, respectively.  Given that multi-level 
checkpointing has just been introduced recently [11], with 
prior concurrent checkpointing work focusing only on net 
measured overhead [16] or single-level checkpointing [22], 
we develop, for the first time, a new Markov model for 
predicting expected job turnaround time (for single-process, 
MPI, and RMS jobs) under multi-level concurrent 
checkpointing. Under the actual application and system 
profiles from Lawrence Livermore National Laboratory 
(LLNL), our multi-level concurrent checkpointing always 
reduces the turnaround time noticeably when compared to its 
Moody’s counterpart, the best known multi-level 
checkpointing model [11]. 

This work focuses solely on developing AIC for RMS 
tasks, where each processes can freely checkpoint at 
different times.  (AIC for MPI tasks requires tracking 
similarity degrees of all MPI processes for coordinated 
checkpointing, which is beyond the scope of this work and 
will be treated in a separate article.)  Our AIC has been 
implemented in BLCR (Berkeley Lab Checkpoint/Restart) 
[8] to evaluate its real performance using six SPEC 
CPU2006 benchmarks, as representatives of RMS task 
processes.  The results demonstrate that in the absence of 
failures, AIC lengthens actual execution times only 
negligibly (upper-bounded by 2.6%) in comparison to those 
without checkpointing.  For real-world networked systems 
with potential failures, AIC reduces the expected job 
turnaround time by up to 47% when compared with its non-
adaptive counterpart. 

II. CHECKPOINTING BASICS AND MOTIVATION 

A. Checkpointing Basics 
A networked system may write its checkpoint data to 

various places, involving different levels of overhead and 
resilience.  Multi-level checkpointing [11, 21] is the most 
noticeable example, able to handle different kinds of failures.  
In addition to local disks, for example, the system may also 
write its checkpoints to remote nodes [11, 21], to distributed 
file storage [11], or to the main memory of a group of nodes 
that form RAID-5 redundancy [11, 18].  Naturally, 
checkpointing overhead is dictated mainly by the checkpoint 

size, prompting incremental checkpointing and delta 
compression for size reduction.  An example is given below.  

Scenario 1:  Consider a simple process with seven 
initial memory pages, called A to G, involving three 
checkpointing instances.  Assume that the process allocates 
two more pages, H and I, and modifies pages A, B, D, E, H, 
I, before the second checkpoint, and that the process frees 
page C and modifies pages D, E, F, G, after the second 
checkpoint but before the third checkpoint.   

Fig. 1 illustrates memory contents involved in the three 
checkpoints. While incremental checkpointing keeps simply 
modified and new pages (e.g., pages A, B, D, E, H, and I, in 
the second checkpoint), delta compression further reduces 
the checkpointed size by writing only difference (called 
delta) between each modified page (called target data) and 
its corresponding old version (called source data) written in 
the previous checkpoint, if available (e.g., pages A, B, D, and 
E in the second checkpoint).  Given the source data and 
associated delta, decompression can produce the target. The 
very first checkpointing instance is always full.  To restart a 
process, incremental checkpointing requires the last full 
checkpoint and all incremental checkpoints generated after 
that full one.  The system may generate a full checkpoint 
periodically to limit this cumulative overhead. 

We classify checkpoint type into local and remote.  
Local checkpoint does (possibly incremental) checkpoint at 
the disk (or memory) of a local node.  Remote checkpoint 
performs a mirror checkpoint over the network (possibly to 
the remote storage, or to RAID-5 group).  To lower its 
overhead, AIC remote checkpoint is enhanced innovatively 
by (1) monitoring the process page similarity so that the 
system does checkpoint when the similarity is high, and (2) 
concurrently executing delta compression and delta 
transmission on separate processor cores, allowing non-
interrupted job execution.  As a result, AIC remote 
checkpointing is dynamic (instead of static, carried out 
periodically), facilitating more aggressive delta compression 
[10].  It enjoys marked 47% reduction, when compared with 
its static counterpart. 

B. Motivating Example for Adaptive Checkpointing 
The basic idea of AIC relies on the fact that the time 

duration for completing delta compression (dubbed delta 
latency) and its resulting size (dubbed delta size) are 
dynamic with respect to the checkpointing moment (dubbed 
checkpoint time).  AIC aims to predict the delta latency and 
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 Fig. 1.  Process in-memory contents at checkpoints.  Each grey block 
represents a page whose contents have been modified or allocated 
since the last checkpoint.  An underlined block denotes a page kept 
in the previous checkpoint, available for further size reduction by 
delta compression. 
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the delta size for determining the most beneficial moments to 
take checkpoints adaptively.  A motivating case observed in 
our real experiment is given next to illustrate the fact that 
dynamic two-level checkpointing is preferred. 

We took page-aligned delta compression (detailed in 
Section IV.C) between the first full checkpoint and the 
second incremental checkpoint at different moments, with 
the normalized delta latency and delta size outcomes (with 
respect to their corresponding benchmark’s means, i.e., 
(delta latency (or size)) / (mean latency (or size) over the 60-
second interval)) versus the checkpointing time depicted in 
Fig. 2.  Each delta latency result in Fig. 2 includes the time to 
read two checkpoints, to conduct delta compression, and to 
write delta back to the local disk. 

The results of Fig. 2 reveal clearly that wide swings in 
the delta latency/size over time may exist for a benchmark, 
making the selection of proper times to take checkpoints 
especially crucial for overhead reduction.  For example, 
Sjeng exhibits a decrease of 95% in its delta latency and 
delta size if its checkpoint is taken at the 35th second, instead 
of the 32nd second (shown by line segments with triangles in 
Fig. 2).  In fact, five (out of those six) SPEC benchmarks 
examined (as listed in Table 3; see Section V.B) have wide 
swings in their delta latency/size curves.  Our adaptive 
checkpointing is based on predicting the delta compression 
latency/size at a given checkpoint time effectively to choose 
the most desirable point of time for checkpointing. 

C. Opportunities for Concurrent Checkpointing 
Since AIC aims to exploit an idle core per node for its 

concurrent checkpointing, one may ask whether such an 
opportunity exists.  To answer this question, we analyze 
usage logs of 5 computing systems at Los Alamos National 
Laboratory (LANL) available in the public domain [15].  
The 5-year logs consist of over 3 million job records, each 
with the submit time, dispatch time (from queue), end time, 
and running node IDs for every execution process.  We 
define a candidate job as the job where each of its processes 
always has one idle core throughout its execution.  In other 
words, a candidate job can exploit those idle cores for 
concurrent checkpointing without purging or suspending 

other job execution processes.  Table 1 lists properties of 5 
systems and the numbers of candidate jobs.  It shows that 
more than 40% of jobs running in 4 systems (i.e., Systems 
15, 23, 8, and 16) always have one idle core for each of their 
processes.  On the other hand, System 20 has only 17% 
candidate jobs, chiefly because the scheduler assigned 
processes to small subsets of nodes.  It is possible to rectify 
the scheduler slightly to leave one core dedicated for 
checkpointing, if available, so that the numbers of candidate 
jobs can be boosted.  The last column of Table 1 lists the 
percentages of candidate jobs under the rectified scheduler, 
which leads to more candidate jobs for the systems with 
multiple nodes (i.e., all but System 15).  One possible 
technique for such rectified scheduling is to let the local 
scheduler in each node reserve the dedicate core for 
concurrent checkpointing.  It can be realized easily by means 
of the CPU affinity library or taskset Linux command 
(which is adopted by our AIC implementation).  

III. MULTI-LEVEL CONCURRENT CHECKPOINTING 
This section treats multi-level concurrent checkpointing, 

with Section III.A-B laying the groundwork of the Markov 
model established in Section III.C.  Section III.D presents 
numerical results, comparing our static concurrent model 
with its earlier Moody’s counterpart [11]. Based on obtained 
results, we can reach the appropriate adaptive checkpointing 
decision, as outlined in Section III.E.  

A. Assumptions and Definitions 
Checkpointing is done transparently, without explicitly 

requested by applications [6, 21, 23].  This article assumes 
failure inter-arrival times to follow an exponential 
distribution with the rate of � over time, as commonly found 
in earlier work [4, 21, 23, 24]).  Additionally, failures are 
assumed to be independent [11, 21, 23] and to possibly 
happen at any time (even during process recovery).  Once it 
occurs, a failure is detected by a diagnostic mechanism (not 
treated in this article).  Failure types are detailed next.   

The transient failures (e.g., intermittent failures [3] and 
faults due to external interferences like alpha particles and 
neutron) can be recovered by re-running the application on 
the same core.  On the other hand, permanent faults can 
result in partial node failures or total node failures.  A partial 
node failure in a multicore node damages some cores but 
leaves one or multiple operational cores for application 
recovery on the node, whereas a total node failure brings 
down all its cores and also causes its local disk to become 
unavailable.  Any application run on a totally failed node can 
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Fig. 2.  Normalized delta latency and delta size of three SPEC benchmarks
(Sjeng, Lbm, and Bzip2) obtained using our testbed (detailed in
Section V) when taking the next (incremental) checkpoint at
different points of time over a 60-second interval. The outcomes are
normalized over respective benchmark’s latency/size means in the
interval. 

TABLE 1.  LANL SYSTEM CHARACTERISTICS 

System
ID 

System 
Type 

# of 
nodes in 

logs 

# of cores 
per node 

% of 
candidate 

jobs 

% of candidate 
jobs after 

rescheduling 
15 NUMA 1 256 50% 50% 
20 Cluster 256 4 17% 32% 
23 Cluster 5 128 77% 78% 
8 Cluster 164 2 47% 75% 

16 Cluster 16 128 41% 42% 
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be recovered only when the checkpoints of the application 
are kept remotely (either at remote storage or remote group 
of nodes for use to resume its execution).  Similar to prior 
work [11], we assume an infinite pool of spare cores.  This 
assumption is likely to hold since real jobs often allocate 
extra cores and the repair rate is higher than the failure rate.   

The system has multiple checkpoint levels via different 
checkpointing means.  We denote level-k checkpoint as Lk.  
Let ck be the checkpoint latency of Lk and rk be the recovery 
time of Lk. Level-k failure is denoted by fk, with an arrival 
rate of �k.  Note that summation of all �k’s equals the system 
failure rate �.  A higher level checkpoint can recover all 
lower-level failures.  Being the most basic checkpoint 
operation, L1 is embedded in all higher-level Lk, for k>1.  
Incremental checkpointing or delta compression can be 
applied to reduce ck.  In Section III.B-D, the static model is 
assumed, where all ck and rk are constant.  This assumption is 
relaxed in Section III.E for adaptive checkpointing.   

An example multi-level checkpointing system has been 
considered recently [11], with three levels involved, as 
follows.  The local checkpoint L1 has a latency of c1, equal to 
the time for writing a checkpoint to the local disk or 
memory.  In the case of MPI programs, c1 also includes the 
time for coordinated checkpointing, where all in-flight 
messages and synchronization are properly handled.  Let L2 
be the remote checkpoint to a RAID-5 group of nodes, while 
L3 be the remote checkpoint to remote storage.  Since L2 and 
L3 must inherently execute L1 at the beginning, their 
latencies equal c1 plus the time to send checkpoint over the 
network (to a RAID-5 group or remote storage).  In our 
model, each constituent node of a networked system at hand 
includes multiple cores, with at least one core pre-allocated 
for supporting remote checkpoints.  A local checkpoint is 
always followed immediately by one or multiple remote 
checkpoints.  Relevant notations are listed in Table 2.   

B. Process Execution 

A base process execution time, t, refers to the time for its 
execution in the absence of checkpointing or failures.  
However, actual process execution usually involves 
checkpoints, say n of them, during the course of its 
execution.  Within the checkpoint interval i in our concurrent 
model, for 1 � i � n, (1) the process does its actual work (for 
w seconds, dubbed work time span), (2) the system performs 
local L1 checkpoint sequentially, requiring the process to 
halt its execution until L1 has been completed, and (3) the 
system initiates remote checkpoint (L3 or both L2 and L3) 
concurrently at the checkpointing core when the process is 
being executed on separate cores.  Fig. 3(a) illustrates an 
interval of process execution for the 3-level concurrent 
model (composed of L1, L2, and L3).  Since at the end of 
Block c1, the checkpoint file is already generated, L2 and L3 
can initiate checkpoint transfer immediately, yielding the 
latencies of c2-c1 and c3-c1.  Note that Blocks c2-c1 and c3-c1 
refer to execution instances on the pre-allocated 
checkpointing core.  As only one available checkpointing 
core is assumed, our model does not initiate any L1 until the 
last L3 has finished.  Should a failure occur, the system 
resumes job execution at the latest recovery point, with its 
restart time determined by the checkpoint type chosen (e.g., 
r1, r2, or r3). 

In contrast, the Moody model performs multi-level 
checkpointing sequentially (as depicted in Fig. 3(c)).  It is 
governed both by work time span w and by parameter nk, 
which indicates how many level-k checkpoints are taken in 
between level-k+1 checkpoints.  The Moody model restarts 
the checkpoint from the latest checkpoint able to recover 
from the arising failure. 

C. Markov Model for Concurrent Multi-level Checkpointing 
We evaluate the expected runtime of the checkpoint 

interval of multi-level checkpointing using the Markov 
model, which is a directed-edge graph representing states 
and state transitions.  The state is annotated with the time 
spent in that states if no failure occurs.  Each edge is 
associated with (1) the probability of state transition on that 
edge, and (2) the expected time spent in the old state before 
transition into the new one.  In a general form, each state has 
up to k+1 edges, one corresponding to the success case, and 
the rest corresponding to k recovery states when a level-k 
failure, fk, occurs.  Since the time between failures follows an 
exponential distribution, the edge-associated values (i.e., the 
transition probability and the expected time spent) can be 
calculated.  Once the model is constructed, the formula for 

TABLE 2.  RELEVANT SYMBOLS 

Symbol Definition 
t Base process execution time 
T Total expected runtime 

Tint Expected runtime of an interval 
NET2 Normalized expected turnaround time 

ck Checkpoint latency of level-k checkpoint  
rk Recovery time of level-k checkpoint 
fk Level-k failure 
�k Level-k failure rate 
� System failure rate 
nk Moody’s parameter for level-k checkpoint 
w Work time span 

wL
* Local optimum work time span 

Bk Estimated bandwidth of level-k checkpoint 
dl Delta latency 
ds Delta size 

Note: The additional subscript (i) denotes the parameter value during 
checkpoint Interval i.  

w c1

c2-c1 c3-c1
w c1

c3-c1

   (a) Concurrent checkpoint model                   (b) L1L3 model 

w c1 c2w w c1 c2w w c1 c3w

(c) Moody sequential model with n0=1 and n1=2 
Fig. 3.  An interval of process execution under concurrent and sequential 

3-level checkpoint models.  The shaded block represents time spent 
for actual work.  Note that work time spans w in (a), (b), and (c) are 
not necessarily identical. 
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calculating expected runtime of the checkpoint interval can 
be obtained by solving a set of linear equations [21].  We 
also apply simplification technique [12] to merge edges and 
states in our model. 

While the system under consideration is equipped with 
three checkpointing levels, in practice, it may enable only 
one or two checkpointing levels.  To be specific, we 
construct the Markov model for a networked system with (1) 
L1 and L3, (2) L2 and L3, and (3) L1, L2, and L3, denoted by 
L1L3, L2L3 and L1L2L3, respectively, as illustrated in Fig. 4.  
Note that L3 is always enabled to avoid restarting from the 
process beginning.  Process execution of an interval in L1L3 
model is presented in Fig. 3(b).  The process running in w 
and c1 intervals in Fig. 3(b) is denoted by State 1, labeled by 
a shaded square, in Fig. 4(a).   If no failure occurs during the 
whole w+c1 interval (corresponding to the black arrow), 
State 2 (c3-c1) is entered, where L3 starts a remote checkpoint 
to remote storage concurrently.  If L3 succeeds, the process 
finishes its execution for the current interval.  Note that at the 
end of Block c1, L1 successfully generates a checkpoint file, 
which includes the application state at the end of Block w.  
After that, L3 sends this generated file to remote storage 
concurrently while the main process continues its execution 
for c3-c1 seconds.  If any failure occurs before the next L1 
checkpoint, the process must rerun this lost execution.  Next, 
let us consider two failure edges leaving State 1.  Since L1L3 
enables only L1 and L3 checkpointing, f2 must be recovered 
by L3 checkpoints (i.e., State 4).  Once the recovery state 
succeeds (from State 3 or 4), the application must rerun the 
unsaved work (State 5) before returning to State 1.  If a 
failure occurs during these states, it moves to State 3 or 4 
accordingly.  Let us consider the failure arising in State 2.  In 
this case, L1 checkpoint is already saved.  If f1 occurs, the 
application moves to State 6 and then starts over at State 2.  
However, if f2 or f3 occurs during State 2 or 6 (where L3 has 
not finished), the application must restart from the old L3 
checkpoint files, forcing it to enter State 4 and then rerun 
State 5 (c3-c1 of the previous interval) afterwards. 

Note that transition from State 1 to State 2 acts as if the 
application has two independent tasks running on different 
cores, one for its execution and the other for L3 
checkpointing, where the failure might occur to any of those 
two tasks.  Since the tasks are independent, the overall 
expected runtime is the maximum of the two.  In addition, 
recovery from a failure at the checkpointing core does not 
require entering State 5.  As a result, the expected runtime of 
the application over segment c3-c1 in Fig. 3(b) is always 

greater than that of the L3 process, enabling us to simplify 
the model as presented in Fig. 4(a). 

The models for L2L3 and L1L2L3 are derived similarly.  
Figs. 4(b) and 4(c) present the constructed models where all 
state transitions to the same states are merged.  Given w, �1, 
�2, �3, c1, c2, c3, r1, r2, and r3, the expected runtime of the 
interval, Tint, can be calculated.  Finally, the total expected 
runtime of the application, T, is the summation of all interval 
expected runtimes.  Our performance metric of interest is the 
normalized expected turnaround time, NET2, defined as 

,2 tTNET =  
where T is the application total expected runtime and t is its 
base process execution time. NET2 gives the estimation of 
how much longer the application is expected to run in the 
system versus its base runtime.  Our goal is to find the lowest 
NET2 value by varying work time span w.  This can be done 
numerically, like in earlier work [11, 21]. 

D. Numerical Results for Static Concurrent Checkpointing 
We compare the performance of our static concurrent 

multi-level checkpointing with that of the Moody model 
pursued recently [11].  System and application profiles used 
for deriving our numerical results are taken directly from the 
prior work [11], as briefly described below.  The application 
is pF3D, an MPI program for laser-plasma simulation, which 
requires 1-GB memory per process.   The system of interest 
is the Coastal cluster, which has 1024 nodes, with �1=2×10-7, 
�2=1.8×10-6, and �3=4×10-7.  Its L1 is a coordinated 
checkpoint to RAM disk with c1 = 0.5.  L2 writes checkpoints 
to the main memory of a RAID-5 group of nodes with c2 = 
4.5. L3 performs checkpointing to the Lustre distributed file 
system, with c3 = 1052.  Each recovery time rk is set to equal 
ck.  Taken from [12], the Moody model code explores its 
variables, searching for the optimal one, which yields the 
highest efficiency possible.  In fact, this metric of efficiency 
is the inverse of our metric of interest, NET2, which is 
believed to better reflect job execution behavior.  The same 
set of � and c parameters is used in our concurrent model to 
search for lowest NET2 by varying w.   

We obtain results for pF3D job execution under different 
system size scaling, which signifies anticipated future 
systems with more nodes and cores.  The system size affects 
MPI applications in two ways.  First, the I/O bandwidth to 
remote storage is more congested as the size grows, i.e., c3 
increases proportionally.  By contrast, c1 and c2 are expected 
to remain unchanged since their corresponding bandwidth 
amounts are expected to grow with the system size.  Second, 

w+c1 c3-c1

r1 r3

c3-c1

r1

w+c1 c2-c1 c3-c1w+c2 c3-c1

r2 r3

c3+c2-
2c1

r2+c2-
c1

r1 r2 r3 r1 r1 r2

c3+c2-
2c1

c2-c1

1 2

3 4

5

6

success
fk=1
fk=2,3

fk=1,2
fk=3

fk=2

fk=1,2,3

                                          (a) L1L3 Model                                        (b) L2L3 Model (merged)                             (c) L1L2L3 Model (merged) 
Fig. 4.  Proposed Markov model for multi-level concurrent checkpointing, with each edge representing possible state transition.  For simplicity, all edges that

point to the same state are merged in (b) and (c). 
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the failure rate is to increase proportionally since a failure of 
any MPI process fails entire job execution.  Fig. 5 illustrates 
NET2 of pF3D under various concurrent checkpoint models 
versus the Moody model.  It shows that L2L3 and L1L2L3 are 
very closed to each other consistently, always yielding the 
lowest NET2.  This suggests that L2L3 is preferred over 
L1L2L3 since L1 does not add any measurable benefit and can 
be dropped.  Interestingly, Moody’s optimal results also 
accommodate only L2 and L3 without incurring L1.  The 
degree of NET2 improvement for L2L3 (compared with the 
Moody results) rises as the system size grows, until it 
reaches 10×, mostly due to increases in the failure rate and 
c3.  On the other hand, L1L3 incurs much more NET2 at large 
system sizes.  This is because L1L3 must recover all f2 
failures (which account for the most frequent failures with �2 
equal to 1.8×10-6) from level-3 checkpointing whose latency 
c3 is higher in a large system, involving much bigger 
overhead than with level-2 checkpoints.  As can be seen in 
Fig. 5, NET2 improvement under L2L3 almost disappears at 
the size of 20×, where the system then experiences exceeding 
overhead due to frequent leave-3 recovery which 
overwhelms L3, the Lustre distributed file system [11]. 

Next, we study the effect of concurrent checkpointing for 
RMS applications, which require limited inter-process 
communications.  In this case, the system size has little effect 
on the failure rates under RMS applications (RMS for short) 
as each process therein can run almost independently.  We 

assume an RMS application with a similar profile as that of 
pF3D (such as the memory footprint size and the number of 
processors) upon its execution.  As revealed in Fig. 6, our 
concurrent checkpoint models always outperform the Moody 
counterpart for RMS.  Again, L2L3, and L1L2L3 have very 
close outcomes, yielding the lowest NET2. The improvement 
gaps between L2L3 and its Moody counterpart expands as the 
system size scales up.  Hence, concurrent checkpointing is 
demonstrated to benefit both MPI and RMS application, with 
L2L3 yielding nearly the best NET2.  Given its lower 
complexity (better suitable for online decision of AIC) than 
that of L1L2L3, L2L3 will be our focus for the remainder of 
this article, aiming to support RMS program execution.    

While idle cores are likely to present in real systems (as 
detailed in Section II.C), they may be scarce in many 
situations, requiring one idle core to cover multiple active 
computation cores which execute application processes.  We 
define sharing factor (SF) as the number of computation 
cores that share one checkpointing core.  We assume the 
worst case of sharing where all sharing processes ask for the 
checkpointing core to handle their checkpoints at exactly the 
same time, with checkpointing core resources (such as I/O 
bandwidth) shared evenly.  Fig. 7 illustrates L2L3 
performance under different SF values and system sizes.  
Moody’s NET2 results are also added for gauging how many 
cores can be shared while concurrent checkpointing still 
outperforms the Moody counterpart.  As can be found in Fig. 
7, L2L3 is still profitable when 3-15 processes share one 
checkpointing core under 1×-20× system sizes. 

E. Adaptive Incremental Checkpionting (AIC) with Delta 
Compression 
The treatment so far assumes that c1, c2, c3, r1, r2, and r3 

are constant, with the model searching for the optimal work 
span w* to yield the lowest NET2 (normalized expected 
turnaround time). However, when incremental checkpointing 
and delta compression are applied to reduce overhead, the 
checkpoint latency may vary greatly (as shown in Section 
II.B), signifying good opportunities for further overhead 
reduction by taking checkpoint adaptively at desirable points 
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of time.  In this case, the selected work time span, checkpoint 
latencies, and recovery times at each interval are varied. 

Our Adaptive Incremental Checkpionting (AIC) requires 
an enhanced prediction model to capture dynamics.  Given 
the two-level concurrent model of L2L3 is sufficient for 
obtaining near-optimal NET2 (as demonstrated earlier), we 
enhance L2L3 to arrive at a non-static multi-level concurrent 
checkpoint model.  To this end, the subscript (i) is added to 
variables for indicating their values at Interval i. For 
example, ck(i) is the level-k checkpoint latency at Interval i.  
Fig. 8 illustrates the AIC model for Interval i, where those 
states that are different from L2L3 are marked in grey.  The 
grey states involve parameters from Interval i-1 since 
Interval i uses checkpoints produced therein. 

The formula for calculating the expected runtime of the 
checkpoint interval Tint can be obtained, although the optimal 
work span w* has no closed form.  Instead of exploring the 
whole search space (like an offline algorithm [11, 21], which 
may take several minutes to finish), we follow the Extreme 
Value Theorem to search for a local optimum work time 
span, wL

*, by comparing NET2 at both search boundaries and 
one local point with �(NET2)/�w = 0 (zero derivative) 
obtained via the Newton-Raphson (NR) approximation 
method.  Our NR returns a point for comparison after it 
either reaches desired precision or iterates 200 times, 
involving O(1) complexity. In general, AIC requires less 
than 5 NR iterations in our experiments, incurring low total 
overhead (< 3%; detailed in Section V). 

Our AIC examines periodically the estimated checkpoint 
latency (i.e., ck(i)) to decide if a checkpoint should be taken.  
At a decision time, AIC calculates wL

* from the current ck(i) 
and other constant parameters.  If wL

*
 is smaller than the 

current interval elapsed time, AIC takes a checkpoint 
immediately.  Subsection IV.D provides details of AIC 
prediction on the checkpoint latency, ck(i).  NET2 under 
varying parameters can be expressed by  

,
1 )int(

2 tTNET n

i i� =
=

  
                              (1) 

where Tint(i) is the expected runtime of Interval i. 

IV. DESIGN AND IMPLEMENTATION DETAILS 
AIC seeks to meet two design goals: (1) low overhead, 

thus calling for lightweight strategy or offloading tasks to 
separate cores, and (2) usability, suitable for applications 
with any memory footprint on diverse machines without 
profiling or code-intruding.  Fig. 9 outlines AIC key 
components detailed as follows.   

Periodically, AIC Predictor makes its prediction from 
monitored lightweight metrics.  The predictor does not need 

any profiling, able to adjust its prediction model online based 
on feedbacks from other components.  Given predicted data, 
AIC Checkpoint Decider may spawn the Incremental 
Checkpointer to get a checkpoint, which would be delta 
compressed by the page-aligned Delta Compressor launched 
on the dedicated core.  The measurements of predicted value 
(e.g., delta latency) are sent back to the predictor for its 
model update.  Finally, the delta files are sent over the 
network to the RAID-5 Group (under L2 checkpointing) and 
Remote Storage (under L3 checkpointing), where the system 
may use them to restart the application.  While Predictor, 
Checkpoint Decider, and Incremental Checkpointer are 
executed on the Computation Core (together with the 
application, see Fig. 9), the delta compressor and remote 
chekcpointer are run concurrently on a dedicated core 
(dubbed Checkpointing Core) for low time overhead. 

A. BLCR and Xdelta3 
We have modified Berkeley Lab Checkpoint/Restart 

(BLCR, a checkpointing implementation for high-
performance applications in Linux) [8] to arrive at AIC. 
Additionally, a page-aligned delta compressor, Xdelta3-PA, 
has been developed to enable AIC.  BLCR consists of kernel 
modules, shared libraries, and a set of command-line tools.  
Application codes must be compiled with the BLCR shared 
library.  We use BLCR version 0.8.2, which does not support 
incremental checkpointing.  Originally based on Rsync 
algorithm [20], Xdelta3 is a delta compressor that hashes 
blocks of source data and uses the hash table to identify the 
longest match in target data.  Our Xdelta3-PA is derived 
from the Xdelta3 (version 3.0y) library. 

B. Incremental Checkpointing and AIC Portability 
We have enhanced BLCR’s kernel modules and shared 

libraries to support incremental checkpointing via the Unix 
mprotect() system call for collecting the list of dirty pages 
during each checkpoint interval.  The mprotect() system 
call lets a program set its memory page protection from 
writing.  If the program attempts to modify such a page, the 
page-fault signal is raised and can be caught by the signal 
handler.  At the beginning of each checkpoint interval, AIC 
write-protects target pages in process address space.  Each 
first writing attempt to a protected page (1) triggers the 
signal handler to add the page to the dirty page list and (2) 
unprotects the page.  AIC kernel module then uses this dirty 
page list to write modified pages into the checkpoint. 

In regard to its portability, AIC inherits BLCR’s support 
for wide-ranged architectures (i.e., x86, x86_64, PPC/PPC64 
and ARM) on Linux.  Lk can be easily setup and reconfigured 
via environmental variables.  AIC additionally deploys its 
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Fig. 8.  Non-static multi-level concurrent checkpoint model of Interval i.
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own signal handlers for page faults and alarms, invalidating 
any application that also uses these signals.  However, we 
found that they are rarely used in our target processor-
memory intensive applications such as SPEC and RMS. 

C. Page-aligned Delta Compression 
AIC uses Xdelta3-PA (page-aligned delta compression) 

to difference each dirty page in the current checkpoint 
against its previous version, if existing in the previous 
checkpoint, for a smaller checkpoint footprint. Other data, 
such as CPU states, process linkages, and opened file 
descriptors, constitute a minor fraction of the checkpoint file 
and are thus not compressed.  While applying delta 
compression between two entire checkpoints might yield 
smaller footprint sizes in certain cases, our Xdelta3-PA, 
being page-aligned, is indispensable because it enables our 
checkpoint latency predictor to estimate the delta 
compression cost on the per-page basis. 

Let a hot page be the dirty page of the current interval 
which was also modified during the previous checkpoint 
interval.  Xdelta3-PA performs delta compression only 
between hot pages and their corresponding old pages in the 
previous checkpoint.  In addition, the order of memory 
contents resided in checkpoint file is rearranged in support of 
fast compression by Xdelta3-PA, running concurrently on 
the checkpointing core by means of the taskset Linux 
command for low overhead.  

In contrast to performing in-memory delta compression 
before writing delta to the disk found previously [19], AIC 
performs delta compression (as a part of remote checkpoint 
mechanism) after it writes an incremental checkpoint to the 
local disk.  The rationale is that doing delta compression on-
the-fly requires buffering the contents of every old page in 
the previous checkpoint, leading to excessively high memory 
overhead for large applications. 

D. AIC Leightweight Predictor 
AIC predicts values necessary for its checkpointing 

decision (i.e., c1(i), c2(i), and c3(i), see Table 2).  The predictor 
for use must be fast to allow fine-grained prediction online 
(e.g., one prediction per second).  Also, no profiling should 
be required for high usability and wide applicability.  AIC 
predictor achieves these goals by means of Stepwise 
regression [13] and Online prediction [1], with lightweight 
metrics easily computed from gathered measures of taken 
checkpoints during code execution. 

The essence of AIC prediction is to relate a target 
variable y to n predictor variables, defined as an n-
dimensional vector, x.  Given N candidates for predictor 
variables, for N � n, stepwise regression [13] selects which 
of them to include in the linear model.  AIC starts by 
obtaining four samples to permit stepwise regression with up 
to three variables (i.e., n = 3) plus their initial weights for the 
prediction model.  Its online prediction then adjusts the 
model weights for subsequent prediction use by adopting a 
normalized version of Gradient Descent algorithm [1]. 

Target Variables and Lightweight Metrics.  As stated 
above, target variables of AIC predictions are c1(i), c2(i), and 

c3(i).  Given delta latency, dl(i), and delta size, ds(i), at ith 
checkpoint, c2(i) can be calculated by  

,2)()()(2 Bdsdlc iii +=  
where Bk is the bandwidth of level-k checkpoint.  The 
second term is the time required for transmitting delta to 
RAID-5 group.  Since delta compression has been done by 
L2, level-3 checkpoint latency, c3(i) can be calculated by 

.3)()(3 Bdsc ii =  
Bk of each level is assumed to be known a priori.  Hence, 
target variables for predictor model are c1(i), dl(i), and ds(i). 

Metrics related to the AIC predictor are derived easily 
from gathered measures of taken checkpoints include the 
number of dirty pages (DP), elapsed time since the last local 
checkpoint (t(i)), Jaccard Distance (JD) [9], and Divergence 
Index (DI) 1.  Stepwise regression chooses some of those four 
metrics plus their composites appropriately to form the 
desirable AIC predictor for a given code after its very first 
checkpoint. Precisely, with � = {DP, t(i), JD, DI}, stepwise 
regression considers the candidate metrics in {C1

�C2
� | C1, C2 

∈  �, 1� � + � � 2} for inclusion in the AIC predictor. 
Jaccard Distance JD(P, P') represents the degree of 

dissimilarity between a hot page P and its old version P' 
resided in the previous checkpoint, as 

),(1)',( pmPPJD −=  
where p is the page size and m is the number of bytes in P 
whose values are equal to those located at corresponding 
addresses in P'.  Next, Divergence Index DI(P), which 
measures self-dissimilarity of a hot page P, is given by  

),(1)( pvPDI −=  
where v is the number of occurrences of the most popular 
value in Page P, and p is the page size.    In general, JD (or 
DI) measures the degree of inter-page (or intra-page) 
dissimilarity.  The strength of these two metrics lies in their 
simplicity for fast calculation.  Their values are also 
normalized, ranging from zero (totally identical) to one 
(totally different).  To lower computation complexity, the 
AIC predictor calculates the mean of JD (or DI) for only 
selected hot pages (whose selection process is stated next). 

E. Hot Page Selection 
The arrival time of a hot page P is defined as the first 

time in the current checkpoint interval that a write to an 
address within P is made.  AIC groups hot pages based on 
their arrival times, assigning two hot pages in different 
groups if their arrival times apart beyond a threshold Tg.  To 
limit its space and time overhead, AIC buffers only the first 
hot page of each group in a fixed-size Sample Buffer (SB) 
for JD and DI computation.  It also adjusts Tg in an attempt 
to hold as many samples as possible in SB at the decision 
time.  This is achieved by doubling (or halving) Tg if SB is 
full (or more than half empty).  Pages in SB are dropped 
accordingly if SB is full. 

                                                           
1 We also examined other relevant metrics stated in the literature, like 
Cosine Similarity and the qualitative variation index M2 [5].  As those 
metrics were found to be closely similar to JD and DI under our target 
applications, we adopted JD and DI due to their low computational costs, 
with the computation time of a hot page below 100 �s. 
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V. EXPERIMENTAL EVALUATION AND DISCUSSION 
Experimental evaluation has been performed on our 

testbed using benchmark codes to assess the delta 
compressor and to compare AIC with both the non-adaptive 
counterpart and state-of-the-art multi-level checkpointing 
(i.e., Moody’s model [11]).  Based on experiment results, we 
have the subsequent findings: 

• AIC enjoys better reduction in the normalized 
expected turnaround time (NET2, by up to 47%) in 
comparison to its non-adaptive counterpart, while 
incurring negligibly low runtime overhead (by less 
than 2.6%),  

• Concurrent checkpointing (either static or adaptive) 
with size reduction techniques yields substantial 
drops in NET2 when compared to the earlier Moody 
model, and 

• our page-aligned delta compressor (Xdelta3-PA) 
enables online checkpoint decision (as detailed in 
Section IV.C), observed to have similar compression 
performance (in terms of file size reduction and 
execution latency) as a conventional compressor 
(Xdelta3). 

A. Experimental Testbed 
Hardware and System Software.  Our experiment 

testbed consists of a Dell PowerEdge R610, with two quad-
core Xeon E5530 processors running at 2.4 GHz and having 
8-MB shared cache. Running CentOS 5.5 64-bit with 2.6.18 
kernel, the testbed contains 32 GB of physical memory (with 
the page size of 4096 bytes) and one 7200-RPM SATA disk.   

Three different types of multi-level checkpointing 
software are installed for the experiment:  

• Moody: modified BLCR which periodically does 
full checkpoints without delta compression.  The 
checkpoint interval is calculated using the Moody 
multi-level checkpoint model [11]. 

• SIC (Static Incremental checkpointing with 
Compression): modified BLCR which periodically 
does incremental checkpointing, with delta 
compression performed between two successive 
checkpoints.  The checkpoint interval is computed 
by our L2L3 concurrent multi-level checkpoint model 
presented in Section III.C. 

• AIC: our adaptive checkpointing mechanism. 
Both Moody and SIC require the average checkpoint 

latency beforehand to calculate their optimal checkpoint 
intervals, while AIC gathers its prediction information online 

using stepwise regression.  The delta compressor and remote 
checkpointing under SIC and AIC are conducted on a 
separate idle core to avoid penalizing application execution.  
Hence, the sharing factor (defined in Section III.D), is 
always 1.   

Applications and Setup.  The target applications include 
six benchmarks from SPEC CPU2006 benchmark suites 
listed in Table 3.  Each of them is the processor-memory 
intensive benchmark fitting in 1-GB memory. Those 
benchmarks are chosen as representative RMS applications.  
The terms of application and benchmark are used 
interchangeably. 

SPEC provides a framework to run its benchmarks and to 
measure the results.  We compiled SPEC applications with 
one of three checkpointing libraries (Moody, SIC, AIC) 
separately for comparison.  During application execution, the 
following measures are gathered in each interval: L1 
checkpoint latency (c1(i)), checkpoint size, delta latency 
(dl(i)), and delta size (ds(i)).  The latencies for remote 
checkpoints (L2 and L3) are calculated from the checkpoint 
(or delta) size and predefined bandwidth amounts (B2 and 
B3).  Fig. 10 shows AIC setup with its delta compressor and 
remote checkpointing handled by a separate core.  While the 
incremental checkpoint file 1 and the delta file A are 
produced under AIC, the measures of l(i), dl(i), and ds(i) are 
gathered in the (physical) compute node.  Being simulated 
components, L2 and L3 do not exist physically, permitting 
our evaluation on various system characteristics (similar to 
[12]).  Like in Section III.D, our base system is the Coastal 
cluster [11] with 1024 nodes. Its L2 bandwidth, B2, equals 
483 GB/s.  The aggregate bandwidth of 1024 nodes for 
writing files to the Lustre distributed file system amounts to 
2.1 GB/s.  Hence, its L3 bandwidth per node, B3, is 2 MB/s.  
This reflects Lustre performance when there are 1024 nodes 
concurrently writing, regardless of application types (MPI, 
RMS, or Sequential programs).   

B. Page-aligned Delta Compression 
For comparison, we run SIC with Xdelta3 and Xdelta3-

PA executed on the checkpointing core.  The mean delta 
latency and file size results under both compression methods 
were calculated for each benchmark.  Let the mean 
compression ratio of a benchmark refers to its average 
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Fig. 10.  Testbed setup composed of physical and simulated 
components, with simulated ones shown in the shaded area.   

TABLE 3.  TARGET SPEC BENCHMARKS WITH THEIR PERFORMANCE METRICS

Benchmark

Base 
execution

time, t 
(seconds)

Delta compressor performance 
AIC 

Execution 
time (seconds)

Compression 
Ratio 

Delta Latency 
(seconds) 

Xdelta3 Xdelta3
-PA Xdelta3 Xdelta3

-PA 
Bzip2 152 0.63 0.66 1.7 0.9 156 (2.6%) 
Sjeng 661 0.51 0.66 10.6 17.2 670 (1.4%) 

Libquantum 846 0.65 0.51 1.5 3.0 853 (0.8%) 
Milc 527 0.94 0.79 79.8 52.5 533 (1.1%) 
Lbm 462 0.91 0.90 63.2 56.9 467 (1.1%) 

Sphinx3 749 0.14 0.27 0.12 0.05 754 (0.7%) 

Note: The base execution time refers to the application execution time 
without checkpointing or any failure.  Numbers in parentheses denote 
percentages of execution time increases over base execution times. 
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compressed delta size to its mean uncompressed checkpoint 
size.  It is desirable to lower the delta latency (for faster 
operations) and the compression ratio (for smaller file sizes) 
as much as possible.  Table 3 shows compression 
performance metrics (i.e., compression ratios and delta 
computation latencies) of Xdelta3 and Xdelta3-PA for six 
benchmarks.  As can be seen, the compression performance 
results of Xdelta3 and Xdelta3-PA are mostly close to each 
other for a given benchmark, yielding comparable file size 
reduction and delta computation times.  Note that Xdelta3 
cannot support online checkpoint decision necessary for AIC 
(as detailed in Section IV.C) and also that delta compression 
is carried out concurrently on a separate (dedicated) core 
without penalizing the regular job execution time. 

C. AIC Results and Discussion 
Experiments have been conducted to assess the 

performance of AIC, for comparison with its static 
counterpart (SIC) and the state-of-the-art multi-level 
checkpoint model (Moody).  Our performance metric of 
interest is normalized expected turnaround time (NET2, 
which denotes the expected turnaround time normalized by 
its base runtime).  NET2 value ranges from 1.0 to 	 and is 
desirable to be held as close to 1.0 as possible.   

AIC in our evaluation makes a checkpoint decision every 
second, with 8-MB Sample Buffer (SB).  The delta 
compressor of Xdelta3-PA is adopted by AIC and SIC.  
Since our benchmarks are short-lived (with the longest base 
execution time of 846 seconds), we set unusually high failure 
rates to be able to collect experimental data (since otherwise, 
no failure is to happen in the course of job execution).  In 
this experiment, we let the failure rate � equal 1.0×10-3.  As 
wide swings in the delta latency and the size of target 
benchmark are observed (see Fig. 2), we expect that long 
running applications with such large swings would especially 
benefit from adaptive checkpointing.  Each level-k failure 
rate, �k, is calculated in proportion to the rates under the 
Coastal system (i.e., 8.3%, 75%, and 1.67% for �1, �2, and �3, 
respectively [11]).  Other parameters of the Coastal system 
are described in Section V.A.  NET2 outcomes of AIC and 
SIC are calculated by Eq. (1) given in Section III.E, while 
those of Moody is obtained from the code taken from a 
public source [12]. 

  Fig. 11 compares NET2 outcomes of AIC, SIC, and 
Moody under six target benchmarks, where the multi-level 
concurrent checkpoints (AIC and SIC) are seen to yield 
markedly better NET2 values over those of Moody.  The 
NET2 reduction amount under AIC depends on applications, 
ranging from 8.5% (Sphinx3) to some 40% (Milc).  In 
addition, NET2 is always less under AIC than under SIC, and 
the gap is larger for applications with higher NET2 (i.e., Milc 
and Lbm).  Note that all AIC and SIC results presented in 
this section are with sharing factor (SF) = 1, (i.e., there is one 
dedicated core for concurrent checkpointing and delta 
compression).  

Next, the effect of the system size is examined.  As 
described in Section III.D, when the processes of a program 
involve limited communications, the system scale has little 

impact on the failure rate but has a proportional effect on the 
bandwidth per node available to remote storage (i.e., B3). B2 
remains unchanged since it scales with the system size.  As 
illustrated in Fig. 12, AIC and SIC performance results for 
the Milc benchmark are compared over the system scale of 
0.25× to 4×, aiming to reveal the effect of adaptive 
checkpointing under growing and shrinking system sizes.   
Clearly, the NET2 difference gap widens when the system 
grows (from 14% to 47%).  While not shown here, Sphinx3 
exhibits the least reduction for AIC versus SIC over same 
scaling, by less than 0.5% at 4×.  This is due to the extremely 
small file size of Sphinx3 (in an order of half MB), not large 
enough to have a measurable benefit for delta compression 
and its adaptive companion.  NET2 reduction amounts under 
other benchmarks lie within the range between those of Milc 
and Sphinx3. 

The benchmark execution times under AIC are listed in 
Table 3, revealing AIC execution time overhead to range 
from 0.7% to 2.6%.  Note that this is the pure overhead when 
there is no failure present, mostly due to the AIC Predictor 
and Checkpoint Decider.  When failures do occur in practice, 
the overhead time is included in NET2 results demonstrated 
in Figs. 11 and 12.  AIC indeed reduces the expected 
turnaround time, when compared to its static counterpart and 
best known (Moody) multi-level checkpointing [11]. 
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VI. PRIOR WORK 
In past decades, several techniques for checkpointing 

have been pursued, aiming to reduce execution overhead and 
increase system availability and reliability.  Meanwhile, on-
line delta compression has been treated as well.  Brief 
reviews on previous checkpointing and delta compression 
work are provided below in sequence. 

A. Checkpointing 
A Plethora of work has been on finding the optimal 

periodic checkpoint interval where checkpoint latency is 
known a priori [4, 24], calling for profiling before actual job 
execution.  AIC, however, requires no profiling beforehand. 

Based on simulation results, checkpointing which 
dynamically ignores application-initiated checkpoints was 
introduced [14].  On the other hand, AIC dynamism is 
resulted from prediction of the delta file size, able to uncover 
better checkpointing times through finer granularity (i.e., 
every second). A variety of adaptive single-level 
checkpointing work based on the dynamic checkpoint cost 
was considered previously [23, 25], whereas AIC addresses 
two-level checkpointing with its cost prediction functions 
including such key parameters as delta compression 
overheads and network traffic.  Unlike [25], AIC does not 
assume that the program state changes according to a 
stochastic process.  Multi-level checkpointing [11, 21] 
involves multiple checkpoint types for tolerating different 
failure categories.  Being a two-level checkpointing 
mechanism, AIC employs fast prediction to realize online 
checkpoint decision during job execution, in contrast to off-
line decision common to prior multi-level checkpointing.  
Hence, AIC soundly outperforms its state-of-the-art multi-
level checkpointing counterpart [11] in terms of NET2. 

Effort was attempted earlier to reduce overhead involved 
in incremental checkpointing [6, 16].  The model for 
concurrent (or forked) checkpointing (which lets the process 
continue its execution upon writing the checkpoint file to the 
local disk [16]) is presented in [22].  By contrast, our model 
supports multi-level checkpointing and adopts concurrent 
checkpointing only for the remote levels (to avoid interfering 
with computation processes). 

B. Delta Compression 
Delta compression has been considered to reduce the 

checkpoint cost regarding local disk accesses [17, 19], 
favoring simple algorithms (like the XOR [19]) to contain its 
overhead.  As AIC tracks dissimilarity in the working sets to 
identify the desirable point with a low compression 
overhead, it can afford more aggressive compression [10] for 
better compressed results.  Unlike an earlier in-memory 
compression approach which buffers contents of every 
modified page fully [19], our AIC buffers only a small 
number of selected pages for its, involving far less space 
overhead to permit large applications. 

Various delta compressors are devised for version 
control, software updates, and remote file synchronization 
[20].  Among delta compressors available in the public 
domain, Xdelta3 [10] is adopted by AIC because it has the 
lowest latency while yielding quality compression results. 

VII. CONCLUSION 
This article introduces AIC (adaptive incremental 

checkpointing), a two-level concurrent checkpointing 
mechanism with delta compression for networked multicore 
systems.  According to our study on production system’s 
logs, idle cores often exist for checkpointing use in realizing 
AIC.  We develop a new multi-level concurrent checkpoint 
model, which shows performance improvement when 
compared with recent multi-level checkpointing under 
various circumstances (i.e., system sizes, application types, 
sharing factor).  The developed model serves as the basis for 
AIC, which further reduces overhead by means of adaptive 
checkpointing with delta compression.  In support of fast 
online prediction without profiling (for predictor 
establishment), AIC significantly reduces checkpoint sizes 
with only negligible increases in benchmark code execution 
times (ranging from 0.7% to 2.6% in comparison to those 
without checkpointing at all), according to evaluation results 
collected on a real testbed.  This leads to lower application 
expected turnaround time (by up to 47%), when compared to 
its static counterpart with fixed checkpointing intervals.  AIC 
thus enjoys better execution performance. 
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