
Carpool: A Bu�erless On-Chip Network
Supporting Adaptive Multicast and Hotspot Alleviation

Xiyue Xiang† Wentao Shi? Saugata Ghose‡ Lu Peng? Onur Mutlu§‡ Nian-Feng Tzeng†
†University of Louisiana at Lafaye�e ?Louisiana State University ‡Carnegie Mellon University §ETH Zürich

ABSTRACT
Modern chip multiprocessors (CMPs) employ on-chip networks
to enable communication between the individual cores. Opera-
tions such as coherence and synchronization generate a signi�cant
amount of the on-chip network tra�c, and o�en create network
requests that have one-to-many (i.e., a core multicasting a message
to several cores) or many-to-one (i.e., several cores sending the
same message to a common hotspot destination core) �ows. As the
number of cores in a CMP increases, one-to-many and many-to-
one �ows result in greater congestion on the network. To alleviate
this congestion, prior work provides hardware support for e�cient
one-to-many and many-to-one �ows in bu�ered on-chip networks.
Unfortunately, this hardware support cannot be used in bu�erless
on-chip networks, which are shown to have lower hardware com-
plexity and higher energy e�ciency than bu�ered networks, and
thus are likely a good �t for large-scale CMPs.

We propose Carpool, the �rst bu�erless on-chip network opti-
mized for one-to-many (i.e., multicast) and many-to-one (i.e., hot-
spot) tra�c. Carpool is based on three key ideas: it (1) adaptively
forks multicast �it replicas; (2) merges hotspot �its; and (3) employs
a novel parallel port allocation mechanism within its routers, which
reduces the router critical path latency by 5.7% over a bu�erless
network router without multicast support.

We evaluate Carpool using synthetic tra�c workloads that emu-
late the range of rates at which multithreaded applications inject
multicast and hotspot requests due to coherence and synchroniza-
tion. Our evaluation shows that for an 8×8 mesh network, Carpool
reduces the average packet latency by 43.1% and power consump-
tion by 8.3% over a bu�erless network without multicast or hotspot
support. We also �nd that Carpool reduces the average packet
latency by 26.4% and power consumption by 50.5% over a bu�ered
network with multicast support, while consuming 63.5% less area
for each router.

KEYWORDS
bu�erless networks, on-chip networks, de�ection routing, multicast,
hotspot tra�c, router design, coherence, synchronization
ACM Reference format:
X. Xiang et al. 2017. Carpool: A Bu�erless On-Chip Network Supporting
Adaptive Multicast and Hotspot Alleviation. In Proceedings of ICS ’17, Chi-
cago, IL, USA, June 14-16, 2017, 11 pages.

1 INTRODUCTION
Chip multiprocessors (CMPs) consist of multiple processor cores
that can communicate with each other. As the manufacturing
process technology continues to scale down, commercial CMPs
have increasing core counts, and some manufacturers are exploring
cores with over a thousand cores [39]. To exploit the high degree

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5020-4/17/06. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3079079.3079090

of parallelism available on CMPs, modern applications o�en spawn
multiple threads that execute on di�erent cores. �ese threads
share data with each other, by maintaining multiple copies of the
data within the caches of multiple cores. To ensure correctness, the
threads (1) must maintain coherence between the copies of shared
data that reside in each core, and (2) coordinate with each other
through the use of synchronization primitives. CMPs employ on-
chip networks (NoCs) to perform the core-to-core communication
necessary for coherence and synchronization.

As core-to-core communication can take place frequently, it is
necessary to optimize the performance and energy e�ciency of
the on-chip network. Traditionally, on-chip networks maintain
bu�ers at each router, which allow some requests to wait at the
router when they contend for access to an output port that is being
used by another request. �ese bu�ers can consume a substantial
amount of the router area and a large portion of the network power.
To reduce the area and power, bu�erless on-chip networks were
proposed [33]. A bu�erless on-chip network avoids the need to
bu�er requests within the router. One common way of doing so is
by employing a routing algorithm called de�ection routing [5, 43].
When two requests at a router contend for the same output port,
de�ection routing sends one of the requests to a port other than
the one it requested (i.e., it de�ects the request to another router),
avoiding the need to bu�er the request [33]. Many works have
built upon the initial bu�erless on-chip network [33] to further
reduce complexity [20] and improve performance and quality-of-
service [3, 4, 9, 15, 19, 25, 28, 29, 36, 37, 50, 51]. A bu�erless network
delivers performance close to a bu�ered on-chip network [20, 33],
despite employing much simpler hardware and consuming much
less power. �us, as increasing core counts require a greater number
of routers in the on-chip network, bu�erless on-chip networks are
a compelling design choice for future CMPs, as shown by various
prior works [7, 11, 20, 33, 36, 37].

A major limitation of existing on-chip networks is that they
are optimized for one-to-one packet �ows (i.e., each packet has
a single source and a single destination), known as unicast traf-
�c. �is leaves much to be desired when on-chip networks are
employed in CMPs, since many communications between cores
exhibit a one-to-many packet �ow, known as multicast tra�c, or a
many-to-one packet �ow, known as hotspot tra�c. Such multicast
or hotspot tra�c o�en occurs during coherence and synchroniza-
tion operations, as we demonstrate with three examples: (1) With
a directory-based coherence protocol, when a shared cache line
is evicted, this o�en involves sending a sequence of invalidation
packets from the home directory node to all cores that contain a
copy of the cache line, forming a one-to-many �ow. (2) Each core
containing a copy of the cache line sends an ACK (acknowledg-
ment) back to the home directory node to indicate that it performed
the invalidation, forming a many-to-one �ow. (3) Multiple cores
can also send identical requests to a home directory node when
the cores are trying to access a shared variable for synchronization,
again forming a many-to-one �ow.

�ere are many mechanisms for o�-chip networks that improve
the e�ciency of one-to-many [44, 47] or many-to-one [8, 49, 52]
�ows. However, these mechanisms are not suitable for on-chip
networks, due to stringent on-chip area and power budgets that
exist for on-chip networks. Although recent works [2, 18, 26, 31,
40, 41, 48] a�empt to optimize one-to-many and/or many-to-one

tzeng
Typewritten Text
Proc. of ACM International Conference on Supercomputing (ICS '17), June 2017, Article No. 19

ICS ’17, June 14-16, 2017, Chicago, IL, USA X. Xiang et al.

�ows for on-chip networks, these techniques are based on bu�ered
networks, and o�en incur a large chip area, large power budget,
and complex �ow control. No previous work provides multicast
or hotspot tra�c support for bu�erless on-chip networks. Our
goal is to provide e�cient one-to-many and many-to-one �ow
support in a bu�erless on-chip network, while maintaining the low
design complexity and high energy e�ciency that make bu�erless
networks very desirable for CMPs.

In this work, we propose Carpool, the �rst bu�erless on-chip
network with hardware support for e�ciently handling multicast
and hotspot tra�c. Carpool is based on three key ideas. First, in or-
der to send a network request to multiple cores, Carpool adaptively
replicates multicast requests, doing so only when the replicated
requests do not introduce network congestion. Second, Carpool
detects and merges hotspot requests from multiple source cores that
are destined for the same core. �ird, Carpool uses a novel parallel
port allocation mechanism that provides e�cient multicast repli-
cation support while minimizing the critical path latency of the
network router. Carpool uses its adaptive multicast replication and
hotspot merging opportunistically to alleviate contention at both
the network interface (NI) and the routers.

We evaluate Carpool on a 64-core CMP with an 8×8 mesh net-
work, using synthetic tra�c workloads that emulate the range of
rates at which multithreaded applications inject multicast and hot-
spot requests due to coherence and synchronization. We show that
with its e�cient multicast and hotspot support, Carpool improves
signi�cantly over a traditional bu�erless network without such sup-
port [33], reducing the average packet latency by 43.1% and power
consumption by 8.3%. Carpool also outperforms a bu�ered on-chip
network [31] with hardware support for multicasting, reducing the
average packet latency and power by 26.4% and 50.5%, respectively,
while consuming 63.5% less area.

We make the following contributions in this work:
• We demonstrate that the multicast and hotspot tra�c injected by

multithreaded applications for coherence and synchronization
operations can quickly saturate a bu�erless on-chip network.
We show that there is a need for e�cient multicast and hotspot
support within bu�erless on-chip networks for CMPs.

• We propose Carpool, which enables adaptive multicast request
replication and hotspot request merging in a bu�erless on-chip
network. We demonstrate that Carpool outperforms and consu-
mes less power than both a bu�erless on-chip network without
hardware support for multicast and hotspot tra�c, and a bu�ered
on-chip network with e�cient multicast support.

• We develop a novel parallel port allocation mechanism that ef-
�ciently supports multicast request replication. Our allocation
mechanism reduces the critical path latency of the network rou-
ter by 5.7% over a router for a traditional bu�erless on-chip
network, even though our router provides dedicated hardware
support for multicast and hotspot tra�c.

2 BACKGROUND AND RELATEDWORK
A core within a CMP sends a request to one or more other desti-
nation cores in the CMP across an on-chip network. When the
core’s network interface (NI) injects a request into the network, the
request is split up into multiple packets that travel through the
network routers to reach the request destination(s). Each packet
is further split up into one or more �its, the base unit of data mo-
vement within the on-chip network. Each router receives one or
more incoming �its from di�erent packets on its input ports, and
must arbitrate the order in which these �its are sent to the router’s
output ports (including �its whose destination is a core a�ached to
the current router). �e NI of a destination core uses miss status
holding registers (MSHRs) to reassemble the �its of each packet
when they arrive (i.e., when the network ejects the �its) [20].

In this section, we discuss related work in the area of on-chip
networks. First, we provide background on how bu�erless on-chip
networks transport �its across a CMP. �en, we study existing me-
chanisms to support multicast tra�c, broadcast tra�c, and hotspot
alleviation in bu�ered on-chip networks.

2.1 Bu�erless On-Chip Networks
�ere has been much work in the area of bu�erless on-chip net-
works [3, 7, 9, 11, 15, 19–21, 25, 28, 29, 33, 36, 37, 51], which avoid
the need for the large bu�ers in traditional networks. A de�ection-
based bu�erless on-chip network [33] handles �it arbitration for
the output ports by guaranteeing that all �its arriving at the router
are sent out along one of the router’s output ports. By doing so, the
router does not need to bu�er any of the �its. �ere are two major
characteristics that are required to ensure deadlock-free operation
in a bu�erless on-chip network with de�ection routing. First, the
router must ensure that each incoming �it is assigned to an output
port, even if the assigned output port is not the port requested by
the �it [33]. �is ensures that no �it is lost in the network even
when a �it loses port arbitration. Second, to ensure that de�ection
routing can always map an incoming �it to an output port, a router
must have at least as many output ports as it does input ports.1

A bu�erless on-chip network has two key advantages over a
bu�ered network. First, a bu�erless network delivers performance
that approaches the performance of a bu�ered network [7, 11, 20,
21, 33], despite employing much simpler hardware and consuming
much less power. Second, a bu�erless network does not need any
�ow control (i.e., a router does not need to exert backpressure to
prevent a neighboring router from sending an incoming �it), as
the input port of a neighboring downstream router is always able
to accept a new �it, due to the lack of queued �its contending
for output ports in the downstream router. As a result of these
properties, a bu�erless network is an a�ractive option for future
CMPs, as it requires much simpler hardware, and is thus likely more
scalable [7, 11, 21, 36, 37], than a traditional bu�ered network.

One drawback of a bu�erless network is that its lack of bu�ers
prevent the e�cient handling of multicast operations, broadcast op-
erations, and hotspot tra�c. In the rest of this section, we examine
existing mechanisms that improve the support of each of these
operations within bu�ered on-chip networks. �ese prior works
require network tra�c to be routed along theminimal path to avoid
duplicate packet delivery. �us, they cannot be adapted easily to
bu�erless networks, where the lack of bu�ers requires techniques
such as de�ection routing that can o�en lead to non-minimal routes.

2.2 On-Chip Networks with Multicast Support
A multicast operation represents a one-to-many �ow, where a net-
work request is sent by one core to m di�erent destination co-
res. In an extreme case, a multicast operation can be sent to all
of the other cores in the network (known as a broadcast opera-
tion). Conventionally, a multicast operation with m destinations
triggers m independent unicast requests, whose �its are injected
sequentially and transferred independently across the network.
�e injection of a large number of �its due to a multicast opera-
tion can induce heavy network congestion. To alleviate the heavy
contention caused by the �its of multicast operations, many me-
chanisms provide improved multicast and broadcast support in
bu�ered on-chip networks. �ese mechanisms are divided into two
major groups: path-based approaches [2, 23, 32] and tree-based
approaches [2, 18, 26, 31, 40, 41, 48]. �e fundamental trade-o�
between these di�erent approaches is whether they keep the router
simple at the expense of greater network tra�c (path-based), or

1De�ection routing can lead to livelock issues. As such, livelock freedom is critical to
provide in bu�erless networks. Prior works [20, 33] provide simple mechanisms for
ensuring livelock freedom, and we refer the reader to them.

Carpool: A Bu�erless On-Chip Network with Adaptive Multicast and Hotspot Alleviation ICS ’17, June 14-16, 2017, Chicago, IL, USA

they modify the router signi�cantly to reduce the redundant �its
due to multicast operations (tree-based).

�e path-based approach does not replicate the multicast ope-
ration into m di�erent unicast requests [2, 23, 32]. Instead, the
approach issues a single multicast request, and designates each
�it of the request as a multicast �it by tagging it with multiple
destinations. �e �its are transmi�ed from one destination to anot-
her sequentially through the network to perform the multicast. A
broadcast operation under the path-based approach traverses all
nodes in the network one by one, resulting in very high latency.

�e tree-based approach initially also does not replicate the
multicast operation [2, 18, 26, 31, 40, 41, 48]. Instead, the approach
lets each multicast �it �rst travel along a common path, which
aims to reduce the number of �its injected into the network. �is
common path consists of the routers that all the �its of allm unicast
requests would have traversed. Once a multicast �it reaches the
point where the routes of the unicast requests would have diverged
(i.e., it reaches a branching node), the router at the branching node
replicates the �it, such that each branch now has its own copy of
the multicast �it. In particular, one approach [41] uses the header
�it of the multicast request to set up the path (including branches)
for subsequent payload �its, which is known as virtual cut-through
routing [27]. However, virtual cut-through routing can lead to a
very long network latency, as the route must be recomputed for
each multicast packet injected into the network [41].

Virtual Circuit Tree Multicasting (VCTM) [18] reduces the rou-
ting overhead by reusing the same routing tree for multiple multi-
cast requests. To construct a multicast tree route, VCTM converts
the �rst multicast request into multiple specially-tagged unicast
requests. �ese unicast requests construct a multicast tree progres-
sively within the network, by identifying the routers at which the
routes of the unicast requests diverge (i.e., branch). VCTM stores
this branching information in a table inside each router. Subsequent
multicast operations destined for the same set of destination nodes
are injected into the network as multicast requests. �e �its of these
multicast requests are replicated at each branching node based on
the existing multicast tree constructed by the initial unicast reque-
sts. VCTM reduces the time required to establish the network path
for the requests. However, VCTM has two drawbacks. First, a multi-
cast routing table is needed in each router to track which multicast
requests require branching, and the table may become prohibitively
expensive when the network size scales. Second, VCTM exhibits
li�le bene�t if the majority of the multicast operations do not share
the same destination, as the tree constructed for one multicast ope-
ration is unlikely to be reused by a subsequent multicast operation.
Instead, each operation must construct a new tree using multiple
unicast requests, undoing the bene�ts of VCTM.

Two other tree-based approaches are specialized for particular
types of networks. Recursive Partitioning Multicast (RPM) [48]
uses a modi�ed routing algorithm to support multicast operations.
When a multicast �it is injected, RPM partitions the network into
eight parts, based on the location of each node relative to the source
node. RPM uses this partitioning, along with a set of �xed port
priorities, to determine whether a multicast �it should be replica-
ted (which occurs when the destination nodes of the �it reside in
network partitions that cannot be e�ciently accessed through only
one network port). RPM repeats this decision at every router that
the �it travels to, avoiding the need to set up a path for each multi-
cast packet. While RPM performs be�er than VCTM by avoiding
multicast route setup, RPM can provide multicast support only for a
wormhole router [13]. MRR [2], on the other hand, is a specialized
mechanism that provides multicast support based on the Rotary
Router [1], by enabling packet replication at low load and disabling
replication at high load.

Other works provide special support for broadcast tra�c in bu�e-
red on-chip networks. Speci�cally, bLBDR [40] provides tree-based

multicast and broadcast support within a prede�ned region of the
network. However, bLBDR may fail to provide multicast support
if the destinations are sca�ered across multiple regions of the net-
work. FANIN/FANOUT is a routing mechanism [31] that a�empts
to achieve ideal load balancing by randomly selecting the path
and branches of a broadcast routing tree. If extended for multi-
cast tra�c support, FANIN/FANOUT o�en incurs high hardware
complexity for two reasons: (1) encoding the destination list in the
�it header involves linear complexity with respect to the network
size; and (2) if a multicast �it fails to get all of its requested ports at
any router, the �it has to stay in the virtual channel bu�er at that
router. �is increases the turnaround time for the virtual channel,
as the channel uses credits to manage the number of �its in �ight.
�e increased turnaround time can hurt performance, or can re-
quire deeper virtual channels (i.e., larger bu�ers), and hence, higher
complexity, to deliver the same performance.

Aside from the limitations described above for each speci�c me-
chanism, all prior studies are based on bu�ered networks and require
the multicast or broadcast tra�c to be routed through the minimal
path to avoid duplicate packet delivery. Due to the non-minimal
nature of de�ection routing, these prior approaches cannot be di-
rectly applied to bu�erless networks. To our knowledge, there has
been no prior work providing specialized multicast and broadcast
support for tra�c aggregation in a bu�erless on-chip network.

2.3 Hotspot Alleviation in On-Chip Networks
A hotspot refers to a destination core that receives multiple requests
originating from multiple source cores, representing a many-to-one
�ow. As the �its of these multiple requests (called hotspot �its)
approach the destination core in the network, they are likely to
traverse similar routes, causing congestion as they all compete
for access to the same network links and resources. Adaptive rou-
ting [25, 34, 39] and source thro�ling [3, 4, 9, 16, 17, 36, 37, 42, 46]
can alleviate the network congestion. However, such mechanisms
are o�en reactive, and are unable to eliminate redundant tra�c.

As hotspot �its have the same destination, they can be merged
and transferred across the network at the same time [52]. In prior
work [31], the �its of acknowledgments (ACKs) triggered by the
same broadcast request are aggregated into a hotspot �it. A�er
aggregation, each hotspot �it tracks the total number of ACKs it
represents. However, simply tracking the number of ACKs may not
be su�cient during synchronization operations, as the destination
might require precise knowledge about the IDs of each individual
ACK sender. For example, when an application uses a lock to
control the execution of a critical section, multiple cores can request
access to the critical section. �e lock owner grants critical section
access to only one of the requestors at a time, and it needs the
core IDs know which requestors it must respond to. As we will see
in Section 4.2, Carpool provides a more generalized approach to
aggregate a variety of hotspot tra�c with di�erent requirements.

3 MOTIVATION
In this section, we motivate the need to support e�cient multicast
operations and hotspot alleviation in bu�erless on-chip networks.
First, we study the impact of multicast and hotspot requests on the
average packet latency in a traditional bu�erless network. �en,
we use an example to demonstrate the potential bene�ts of (1) em-
ploying multicast �its that fork at intermediate routers in the net-
work, and (2) merging hotspot �its in a bu�erless network. We use
the basic principles of this example to drive the design of Carpool,
which we describe in Section 4.

3.1 Impact of Multicast and Hotspot Flits
To study the impact of multicast and hotspot tra�c in a bu�erless
on-chip network [33], we run two experiments that characterize

ICS ’17, June 14-16, 2017, Chicago, IL, USA X. Xiang et al.

the impact of network injection rates for multicast and hotspot tra�c
on an 8×8 mesh based BLESS network [33]. Section 6 describes our
experimental methodology.

In the �rst experiment, we examine the e�ect of the multicast
injection rate (mc-rate), where mc-rate is the fraction of network
requests injected into the network that are multicast network re-
quests. For the multicast request, we randomly select one of the
network nodes to inject the request, and we randomly pick m desti-
nation nodes (ensuring that the destination node is not the source
node) for a random value of m between 1 and 63, inclusive. All
other requests injected into the network are unicast requests, with a
randomly-selected destination. For four di�erent values of mc-rate,
we measure the average packet latency as we vary the network in-
jection rate. Figure 1a shows that asmc-rate increases, the injection
rate at which the bu�erless network saturates greatly decreases. We
observe that whenmc-rate increases from 0 to 0.10, the average pac-
ket latency increases by almost 3×, causing the network to saturate
at an injection rate of only 0.06 packets/cycle/node.

0
100
200
300
400
500

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35Av
er

ag
e

Pa
ck

et

La
te

nc
y

(n
s)

Injection Rate (packets/cycle/node)

mc-rate = 0
mc-rate = 0.01
mc-rate = 0.05
mc-rate = 0.10

(a) Impact of multicast injection rate on packet latency

0
100
200
300
400
500

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35Av
er

ag
e

Pa
ck

et

La
te

nc
y

(n
s)

Injection Rate (packets/cycle/node)

hs-rate = 0
hs-rate = 0.01
hs-rate = 0.05
hs-rate = 0.10

(b) Impact of hotspot rate on packet latency

Figure 1: Packet latency as multicast and hotspot tra�c va-
ries in an 8×8 mesh bu�erless on-chip network.

In the second experiment, we examine the e�ect of the hotspot
rate (hs-rate), where hs-rate is the fraction of network requests
injected into the network that are destined to a common hotspot
destination node. We randomly designate one of the nodes to be a
hotspot, and with probability hs-rate, a unicast request injected by
another node in the network is sent to the hotspot node. All other
requests injected into the network are unicast requests that are
sent to a randomly-selected destination. For four di�erent values
of hs-rate, we measure the average packet latency as we vary the
network injection rate. Figure 1b shows that as hs-rate increases,
the injection rate at which the bu�erless network saturates decre-
ases signi�cantly. We observe that when hs-rate increases from
0 to 0.10, the average near-saturation latency (i.e., the packet la-
tency just before network saturation occurs) increases by 39.2%,
causing the network to saturate at an injection rate of only 0.17
packets/cycle/node.

�ere are two key reasons why increasing mc-rate or hs-rate
prolongs the average packet latency. First, �its associated with
a multicast request must be converted into m unicast �its that
are serialized at the injection point, due to the lack of hardware
multicast support. �e serialization can take up to m cycles for
a multicast request with m destinations to complete network in-
jection. Second, hotspot tra�c is more likely to converge on similar
paths, causing increased �it de�ection. As hotspot �its o�en con-
tain the same information, network bandwidth is wasted when the
�its are transmi�ed individually. �e large number of �its due to
multicast requests and hotspot tra�c increase the network load,
leading to a high �it de�ection rate in the network. For example,

we �nd that the de�ection rate increases by an average of 31.8×
when mc-rate increases from 0 to 0.10, prior to network saturation
(injection rate < 0.06). De�ected multicast and hotspot �its not
only slow down the threads that generated the requests, but also
de�ect �its from other threads unnecessarily, degrading overall sys-
tem performance [9, 19]. �erefore, providing e�cient support for
multicast and hotspot tra�c is critical to ensure high performance
for bu�erless on-chip networks.

3.2 Forking and Merging Flits
In order to alleviate the high amount of network congestion caused
by multicast and hotspot requests, an on-chip network can provide
dedicated hardware support for both of these types of requests. For
a multicast request, instead of converting the request to multiple
unicast requests at the source node, the source node can inject a
single multicast request, which gets forked at intermediate routers
where the routes to the destination nodes follow two or more out-
put ports of the router (called multicast �it forking). For hotspot
requests, when an intermediate router detects that two requests
destined for a common destination node contain the same con-
tent, the router can merge the requests into a single request (called
hotspot �it merging). By forking multicast requests and merging
hotspot requests at intermediate nodes, the number of inter-router
transmissions decreases signi�cantly in the entire network.

Figure 2 illustrates the potential of forking requests, using an
example multicast request that needs to transmit one �it of data
from source node S to destination nodes D1 through D6. Without
support for multicast forking, the source node injects six indepen-
dent �its sequentially into the network, as shown in Figure 2a,
where each �it is destined for a di�erent node. �is requires 15
node-to-node transfers of �its in the network, and can take as many
as 10 cycles to complete, if the �it that has to travel to node D6
is injected last. If the intermediate routers had the ability to fork
�its from multicast requests, as shown in Figure 2b, the number of
node-to-node transfers would reduce to 6, and the request would
be completed in 5 cycles.

S D2 D3

D5 D6

6 2 1

3
2 1

D1

D4

(a) Without multicast forking

S D2 D3

D5 D6

1 1 1

1
1 1

D1

D4

(b) With multicast forking

Figure 2: Example of howmulticast flit forking reduces net-
work tra�c. �e number on each link indicates the load of
the link. Shaded routers fork the multicast �it.

In Figure 3, we show an example of hotspot requests, where two
requests, from source nodes SA and SB, are both trying to send one
�it with the same payload to destination node D. In this example,
node SA injects its �it one cycle before node SB does. Without
support for hotspot merging, the �its from the two nodes reach
node R2 at the same time, and contend with each other for the
output port to node D, as shown in Figure 3a. Since only one �it
can win port arbitration (the �it from node SA in our example), the
other �it (the �it from node SB) is de�ected to node R3. As a result of
the de�ection, it takes 7 node-to-node transfers to complete the two
requests, requiring 6 cycles. If node R2 could merge �its from two
hotspot requests together, as shown in Figure 3b, the two �its would
be merged into one �it, which would eliminate port contention and
thus the de�ection. As a result, the requests would require only 4
node-to-node transfers in total, and would be complete in 4 cycles.

As our examples show, a network with hardware support for
forking multicast requests and merging hotspot requests can reduce
both tra�c and latency. Unfortunately, existing bu�erless on-chip
networks do not include such support, and thus can su�er from the

Carpool: A Bu�erless On-Chip Network with Adaptive Multicast and Hotspot Alleviation ICS ’17, June 14-16, 2017, Chicago, IL, USA

A

A

A

B

B

B B

SA

D

R1

R2SB

R4R3

(a) Without hotspot merging

A
SA

D

A

AB

R1

R2SB

R4R3

B

(b) With hotspot merging

Figure 3: Example of how hotspot flit merging reduces net-
work tra�c. �e letters on each link indicate the source
node(s) of the packet using the link; bold letters indicate a
de�ected �it. Shaded router merges the two �its.

high latency and early saturation demonstrated in Section 3.1. �e
e�ectiveness of multicast forking and hotspot merging motivates
our design for Carpool, which we describe in the next section.

4 CARPOOL DESIGN
We introduce a new bu�erless on-chip network called Carpool,
which provides e�cient hardware support for multicast forking
and hotspot merging. In Carpool, each �it within the network is
tagged as a (1) unicast �it, (2) multicast �it, or (3) hotspot �it, using
a 2-bit encoding. For a multicast request (i.e., a request destined for
more than one node), Carpool injects a single set of multicast �its
into the network, instead of replicating the request into multiple
unicast requests and injecting the �its of each request sequentially.
Carpool generates hotspot �its for special responses (e.g., ACKs for
coherence, synchronization requests)2 sent by multiple nodes to a
common destination node. For all other requests that are destined
to a single node, Carpool injects unicast �its.

�e intermediate routers of Carpool can decide to fork new
replicas of a multicast �it that is traversing the network, based on
the destination list contained in the multicast �it header. Amulticast
�it is forked only when a productive port (i.e., one of the output
ports requested by the multicast �it) is available for each copy of the
�it. Likewise, the intermediate routers of Carpool merge multiple
hotspot �its en route to the same destination node into a single
hotspot �it when the �its arrive simultaneously (at the same cycle)
at the router.

A �it spends two cycles in each router, and the router is pipelined.
As each router does not have input or output bu�ers, Carpool uses
de�ection routing to resolve �it contention, similar to BLESS [33].
Each �it that arrives at a router is either routed to the port that
it requests, allowing the �it to make forward progress toward its
destination, or is de�ected to another available output port in case
another contending �it has acquired access to the requested output
port. To ensure that deadlock does not occur, and to minimize
network congestion, multicast �its are forked only when there are
enough output ports available for all �its entering the router and
for all multicast �it replicas. When a multicast �it cannot be forked,
the �it travels to its destination nodes sequentially.

In the rest of this section, we describe in detail how Carpool
performs multicast �it forking (Section 4.1) and hotspot �it merging
(Section 4.2).

4.1 Multicast Flit Forking
In Carpool, a multicast �it can be forked as long as a productive
output port is available for each replica, thus ensuring deadlock-
free behavior. In a bu�erless network router, all �its that arrive at
the same cycle are sent out on their assigned output ports simulta-
neously. As a result, we can avoid deadlock by simply guaranteeing
that the number of �its (including replicas) that request output
2Carpool focuses on special response �its since they are easier to merge, because their
payload is small or non-existent.

ports at any cycle is less than or equal to the total number of output
ports in the router. �is guarantee can be expressed as:

incominд − removed + replicas ≤ outPorts (1)
where incoming is the number of �its that arrived together (i.e.,
at the same cycle) to the router (including �its injected from the
local input port), removed is the number of the incoming �its that
are being removed from the network by the router, replicas is the
number of multicast �it replicas that the router can create during
forking, and outPorts is the number of output ports available at the
router. �e router removes a �it from the network if the �it is (1) at
its destination node, or (2) a hotspot �it and is merged with another
hotspot �it. �is equation ensures that all incoming �its and their
replicas are able to move through the router pipeline and onto the
next router without stalling and without requiring any bu�ering
or dropping.

Destination Encoding. A multicast �it must carry a list of
all of its destination nodes within its header, as an intermediate
router uses the destination list to determine which output ports are
productive ports for the �it, and whether the multicast �it should
be replicated. Prior approaches to multicasting in bu�ered on-chip
networks either use an identi�er that indicates the pre-established
path a multicast �it should take through the network [18, 41], or
store an n-bit vector in the �it header to indicate all n potential
destination nodes in the network [48].3 As discussed in Section 2,
se�ing up a pre-established path for multicast �its usually incurs
a long latency, fails to exploit path diversity, and cannot adapt to
changes in network conditions during packet transmission. Directly
encoding all n potential destinations with an n-bit vector does not
scale well [10, 48], as we must increase the size of the �it, and
therefore the width of each channel, linearly with the increase in
network node count.

To reduce the impact of scaling the network node count, Carpool
uses a two-level hierarchical representation for the destination list.
�e destination list is represented as the tuple {clusterID, dstList}.
In Carpool, we partition a network into 2c clusters, each of which
contains multiple routers and is indexed by a c-bit clusterID number.
Each node belongs to one of the clusters in the network. Within a
cluster, we can have up to m nodes. �e nodes inside a cluster are
identi�ed using an m-bit vector called dstList. By using an m-bit
encoding for m nodes, we can select multiple destination nodes
within a cluster for each multicast �it. To improve scalability, a
multicast �it can be destined to only one cluster, but is allowed
to go to multiple destinations within the destination cluster. If a
source node needs to send a request to multiple destinations spread
across k clusters, its network interface injects k multicast requests,
one for each of the clusters.

With the hierarchical destination representation in Carpool, each
multicast �it must carry a destination list of size c+m bits. To avoid
the need for additional wires, Carpool transmits the m bits used to
represent dstList along wires that were previously used by a unicast
�it for the payload. As a result, Carpool o�en needs more �its to
send a multicast request than it does for a single unicast request.
Even then, a multicast request destined for d nodes transmits much
fewer �its in total than sending d unicast requests. Let us look at
an example where a b-bit request is being sent to d nodes within a
single cluster, where the network channel uses h bits to transmit
the data. Carpool uses a single multicast request, consisting of
b/(h −m) �its, to send the data to all d nodes, where h −m represents
the payload size of a multicast �it a�er we subtract the m bits used
for the destination list. In a traditional bu�erless on-chip network,
which can send only unicast requests, the network uses d × b/h �its

3Prior works [31, 40] that provide only support for broadcasting, not multicasting, do
not carry any destination information, but they also cannot support e�cient multicast
operations.

ICS ’17, June 14-16, 2017, Chicago, IL, USA X. Xiang et al.

to send the data using d separate requests. Carpool uses fewer �its
to send the data as long as the following relationship holds:

m < h − h

d
(2)

In our work, we assume that Carpool uses a 4-bit clusterID and
a 64-bit dstList (i.e., c = 4 andm = 64), which can uniquely identify
up to 1024 nodes. For a network channel where 128 bits are used
to transmit data, a multicast request costs no more than a series
of unicast requests as long as d is at least 2. In other words, a
multicast request in Carpool never transmits more �its than sending
d separate unicast requests to the d destinations.

Adaptive Forking. Deciding when to fork a multicast �it is
critical in determining the performance of the network. We observe
that when there is a low overall load on the network, usingmulticast
�its and forking �it replicas can reduce network latency, improve
network utilization, and increase the overall network throughput.
However, we observe that when the network load is high, multicast
�it replication can increase the probability of reaching network
saturation. �is is because, a�er a �it is forked, its replicas increase
the total number of �its in the network, which can lead to saturation
at high load.

During periods of high load, bu�erless networks employ tech-
niques to control the network injection rate [9, 15, 36, 37] to avoid
reaching saturation. Many metrics have been proposed to quantify
network congestion [9, 12, 15, 24, 30, 36, 37]. In particular, the
injection starvation rate (σ , the fraction of cycles where a node
a�empts to inject a �it but is unable to) is considered to be a good
congestion indicator in a bu�erless on-chip network [15, 36, 37].
When the network load increases, �it injection is more likely to
fail due to congestion, which in turn increases the starvation rate.
�e starvation rate can be obtained easily by maintaining a local
counter within each router.

Carpool extends upon existing injection control techniques [36,
37] to adaptively determine when each router should disable mul-
ticast �it support. A router disables multicast �it support when
its injection starvation rate exceeds a predetermined threshold.4
When multicast �it support is disabled, a source node a�ached to
the router is not allowed to inject a multicast �it. Instead, the node
must inject multiple unicast �its, as is done in traditional bu�erless
on-chip networks. By using unicast requests, we e�ectively ensure
that all necessary �it replicas are already created at the time of
injection, and that the �its are injected using existing injection con-
trol techniques to avoid saturation. If a multicast �it arrives from
another router into a router where multicast �it support is disabled,
the router cannot fork the multicast �it. Instead, only a single out-
put port is allocated to the multicast �it,5 and the multicast �it is
delivered to each of its destinations sequentially (i.e., when the �it
reaches a router that is a�ached to a destination node, the �it forks
a response to the output port connected to the destination node,
and continues onto its next destination).

4.2 Hotspot Flit Merging
When a source node sends a special response (e.g., an ACK for a co-
herence request, a synchronization request) to a certain destination
node, there are likely other nodes sending an identical message
to the same destination node. In Carpool, such special responses
are sent using hotspot �its. A hotspot �it uses the same encoding
format for its source nodes as a multicast �it does for its destination
nodes (see Section 4.1). For source encoding, we call the m-bit list
of nodes within a cluster the srcList.

4In ourwork, we empirically select the injection starvation rate thresholdσ = 0.00006.
5When multicast �it support is disabled, the routing algorithm selects a port with the
following priority: E,W, N, S.

An intermediate router in Carpool merges hotspot �its together
if the �its have the same destination node, originate from the same
network cluster, and contain the same payload. We number the
input ports of each router (N, E, S, W, and Local in Carpool) in
ascending order. When a hotspot �it (which we call Flit A) arrives
at one of the input ports, the router checks any higher-numbered
input ports to search if there are other hotspot �its that Flit A can
merge with. If another hotspot �it with the same payload (which
we call Flit B) is found, the router (1) updates the srcList of Flit A to
include the list of sources from Flit B, and (2) drops Flit B.

In order to check whether two hotspot �its match, we need to
add comparators into the router. Each comparator needs to check
whether (1) the destinationsmatch (6 bits in an 8×8 network), (2) the
�its come from the same cluster (4 bits in our work), (3) the �its have
matching �it sequence numbers (4 bits), and (4) the data matches
(we restrict the data width of a hotspot �it to 48 bits, as the data
typically represents a memory address). In all, each comparator
needs to be 62 bits wide, and each router in Carpool requires 10
comparators, consuming 11.5% of the total area of the router (see
Section 6 for our methodology and Section 7 for our analysis).

5 ROUTER MICROARCHITECTURE
In this section, we describe the underlying microarchitecture of
each network router in Carpool. �e router microarchitecture is
based on the microarchitecture used in BLESS [33], to which we
add support for multicast �it forking and hotspot �it merging.

5.1 Pipeline Design
Figure 4 shows the microarchitecture of a Carpool router. We
organize the major functional blocks of the router into a two-stage
pipeline. �e �rst stage consists of three blocks: (1) merge, eject,
and inject (MEI), (2) route computation (RC), and (3) permutation sort
(PS). �e second stage consists of three blocks: (1) port allocation
(PA), (2) switch traversal (ST), and (3) destination management (DM).
In addition to the two stages of the router pipeline, each �it must
perform link traversal (LT).

MEI: Merge, Eject, and Inject

N

E

S

W

Eject

EJECTOR
TREE

KILL
LOGIC

MERGE
LOGIC

INJECTOR
MUXES

Inject

RC: Route
Computation

PS: Permutation
Sort

PA
: P

or
t A

llo
ca

tio
n

ST
: S

w
itc

h
Tr

av
er

sa
l (

Cr
os

sb
ar

)

D
M

: D
es

tin
at

io
n

M
an

ag
em

en
t

N

E

S

W

APV APV
sorted DPV

flit timestamps

de
st

in
at

io
n

lis
t

DPV

Figure 4: Carpool router microarchitecture.

Merge, Eject, and Inject (MEI). �e router �rst accepts �its
from the non-local input ports (i.e., N, E, S,W), assigning each �it
to one of four channels within the router. �e router checks the �its
on these channels to see if any of them are hotspot �its that can be
merged, and performs merging if possible (see Section 4.2). Next,
the router looks to see if any of the �its are destined for the local
node(s) a�ached to the router. �e router ejects at most one of the
�its with a local destination; any other �its with local destinations
are de�ected in the second pipeline stage. When a �it is ejected,
the local node network interface uses miss status holding registers
(MSHRs) to reassemble the packet [3, 4, 19, 20, 33].

A�er merging and ejection are complete, the router accepts at
most one �it for injection by the local node(s) into the network.
Injection can take place only if there is at least one free channel

Carpool: A Bu�erless On-Chip Network with Adaptive Multicast and Hotspot Alleviation ICS ’17, June 14-16, 2017, Chicago, IL, USA

within the router. By performing merging and ejection before in-
jection, we maximize the probability that one of the channels is free
when injection needs to be performed, alleviating starvation at the
node network interface and enabling higher network throughput.

Carpool handles ejection to and injection from the local ports
separate from the non-local ports, which are handled during ST
using a crossbar. �is is because the crossbar complexity increases
quadratically with the number of ports [20, 51]. �us, in order to
reduce the complexity of the crossbar switch, we perform ejection
and injection for the local ports earlier in the pipeline, similar to
techniques adopted by other router designs [20, 51].

Route Computation (RC). In parallel with MEI, the router
performs route computation and permutation sort. Route computa-
tion determines the desired output ports (i.e., the productive ports)
of each �it, based on the destination(s) listed within the �it header.
Carpool uses X-Y routing [14] to determine the desired output ports
for each unicast or hotspot �it. �e desired output ports are marked
in a 4-bit desired port vector (DPV).

To compute the DPV of a multicast �it, we �rst partition the
network into four quadrants (NE, SE, SW, and NW), which are
mapped to the four output ports of the router (N, E, S, andW, res-
pectively). For each quadrant and each cluster, the router contains
a bitmask (MASKc,q), which indicates all of the nodes assigned to
the quadrant q for cluster c. �e router uses dstList andMASKc,q
to compute a DPV for the multicast �it that contains all of the
output ports for which at least one of the �it’s destination nodes is
assigned. MASKc,q depends solely on the network topology, and
thus needs to be computed only once, at network con�guration
time. Note that performing recon�guration at runtime based on
link availability improves the fault tolerance of the network [22],
but this is beyond the scope of our work.

RC uses �xed port priorities to assign a �it to an output port,
based on which quadrant(s) contain destination nodes of the �it. In
a bu�ered on-chip network, routing �its with �xed port priorities
causes unbalanced link utilization, which further increases latency
and degrades throughput [31]. However, in a bu�erless on-chip
network, de�ection routing provides a source of randomization,
which improves the load balance within the network. �erefore,
routing multicast �its with a �xed port priority in Carpool avoids
load imbalance while bene�ting from low design complexity.

Permutation Sort (PS). Once RC is complete, it generates a
list that contains the 2-bit channel ID of each �it and the 4-bit DPV
for the channel. In the permutation sort block, the router uses
this list to rank the �its. Prior work [20, 33, 51] o�en rearranges
the mapping of �its to channels. Rearranging the �it-to-channel
mapping can require high complexity due to the number of bits of
data that need to be moved. Instead, Carpool sorts the list of DPVs,
using the age of each �it (based on the �it timestamp), and uses the
DPV ordering to enforce priority in the second pipeline stage. To
reduce the complexity of the sorting hardware, Carpool employs
a partial bitonic sort algorithm using a two-stage permutation
network [20, 51], which identi�es the highest-priority �it and only
partially sorts the remaining �its [51].

Port Allocation (PA). At the beginning of the second router
pipeline stage, the router uses the sorted list of desired port vectors
(DPVs) from PS to allocate an output port to each �it. We �rst
describe a naive, sequential approach to port allocation, as shown
in Figure 5a. We improve upon this with our parallel port allocation
mechanism, shown in Figure 5b, which we discuss in Section 5.2.

In sequential port allocation (SPA), the output ports are assigned
sequentially to each �it. SPA starts with the highest-priority �it
(Flit 0 in Figure 5a), as ranked by PS, and advances to the next
highest-priority �it (Flit 1) only a�er all ports are allocated to the
highest-priority �it. For each �it, SPA uses the DPV to determine

Flit 0 Flit 1 Flit 2 Flit 3

PE

Desired Port
Vector

DPV0

PW PN PS D

APV0
Allocated Port
Vector

DPV1

P
W

APV1

P
E

P
N

P
S D

DPV2

P
W

APV2

P
E

P
N

P
S D

DPV3

P
W

APV3

P
E

P
N

P
S D

(a) Sequential port allocation (latency: 7.0ns)

Flit 0
unicast

0 0 0 1
Pending
Desired

Port Vector
DPV0

Initial
Allocated
Port Vector

IPA

0 0 0 0
IAPV0

PPD

0 0 0 1
PDPV0

FPA 0 0 0 1
APV0

1 0 1 1
DPV1 IPA

1 0 1 0
IAPV1

PPD

0 0 0 0
PDPV1

FPA 1 0 1 0
APV1

0 0 0 1
DPV2 IPA

0 0 0 0
IAPV2

PPD

0 0 0 1
PDPV2

FPA 0 1 0 0
APV2

0 0 0 0
DPV3 IPA

0 0 0 0
IAPV3

PPD

0 0 0 0
PDPV3

FPA 0 0 0 0
APV3

Flit 1
multicast

Flit 2
unicast

Flit 3
no flit

E W N S

E W N S

(b) Parallel port allocation (latency: 3.2ns)
Figure 5: Two implementations for port allocation (PA) in
Carpool. Critical path for each PA implementation shown
with a dotted red line.

if the productive port(s) requested by the �it are available. SPA
checks the ports one at a time. In the block labeled PE, SPA checks
if (1) the �it requested Port E and (2) Port E has not yet been
allocated to an earlier �it, and then allocates the port to the �it
if both conditions are true. SPA repeats this process for Port W
(PW), Port N (PN), and Port S (PS). If the �it is a multicast �it, and
more than one of its desired ports is available for allocation, the
router forks the multicast �it by allocating multiple ports to the
�it, as long as the number of ports allocated does not violate our
constraint in Equation 1 to ensure deadlock-free operation. If no
ports are allocated to the �it a�er the PS block completes, the �it
needs to be de�ected, and is assigned to the next available port in
block D. For each �it, SPA generates an allocated port vector (APV),
which lists the output ports assigned to the �it.

Switch Traversal (ST). Based on the APVs generated by PA,
the router con�gures the crossbar switch to transfer a �it from
any one of its input channels to one or more output ports. A
multicast �it that has been allocated to more than one productive
port is replicated in the crossbar by simply assigning one channel
to multiple output ports. We use a conventional multiplexer-based
crossbar switch, due to its straightforward design. Amore advanced
crossbar switch [31] can be adopted to further reduce the hardware
cost and energy consumption beyond what we report.

DestinationManagement (DM). If amulticast �it is replicated
during ST, the router must update the destination list of each replica
to ensure that multiple copies of the same �it do not visit the same
destination node. �e router designates one copy of the multicast
�it as the original, and all other copies as replicas. �e router
modi�es the dstList (see Section 4.1) of each replica to contain only
the destinations in the quadrant assigned to the replica’s output
port, by masking dstList with MASKc,q . For the original �it, the
router zeroes out the destination nodes in the dstList that have been
assigned to replicas. �e zeroing can be done by bitmasking dstList

ICS ’17, June 14-16, 2017, Chicago, IL, USA X. Xiang et al.

with the inverse of theMASKc,q for the quadrants being visited by
the replicas. Once DM is complete, the �its perform link traversal
(LT) and go to the next router along their path.

5.2 Parallel Port Allocation
Sequential port allocation, as shown in Figure 5a, leads to a large
latency in the router, for two reasons. First, in order to enforce a
strict �it priority, a port request from a low-priority �it (as ranked by
PS) cannot be processed until requests from all higher-priority �its
are resolved. �is sequential dependency between �its during port
allocation has been identi�ed in prior studies [20, 51]. Second, due
to the existence of multicast �its, the output ports must be allocated
one at a time to avoid deadlock, as explained in Section 4.1.

Using Cadence Encounter (see Section 6), we �nd that the latency
of our round-robin implementation of the PA block using sequential
PA is 7.0ns, and that this block falls along the critical path of the
pipeline stage latency. As a result, it limits the router clock rate,
which in turn limits the network throughput. Inspired by prior
work [20, 51], we design a parallel port allocation (PPA) mechanism
for Carpool that signi�cantly reduces the latency of PA. �e key
idea of parallel port allocation is to perform multi-stage port allo-
cation, where only uncontended ports are initially assigned to each
�it (which can be performed on all �its in parallel), and then the
remaining ports are assigned using a simple priority ordering. Our
parallel port allocation requires three steps, as shown in Figure 5b:
(1) initial port allocation (IPA), (2) pending port determination (PPD),
and (3) �nal port allocation (FPA).

In IPA, the �rst step, the router allocates as many uncontended
productive ports (i.e., ports for which only one �it is making a
request) as possible to the �its. As is done with SPA, a multicast
�it can be assigned to multiple uncontended ports, as long as the
constraint for deadlock-free operation (Equation 1) is not violated.
�e uncontended port allocations are saved to an initial allocated
port vector (IAPV). By using bitwise operations, PPA can perform
initial port allocation on all �its in parallel.

In PPD, the second step, the router generates a pending desired
port vector (PDPV) for each �it. If a �it was not assigned any ports
during IPA, its PDPV is the same as its initial DPV. If a �it was
granted at least one port during IPA, the router zeroes out its PDPV,
preventing the �it from acquiring any more ports to ensure that the
other �its have the chance to claim a productive port in the �nal
step. For a multicast �it, this means that it can fork replicas only
during IPA, when the replica can be assigned to an uncontended
output port. Like IPA, PPD can be performed on all �its in parallel.

In FPA, the �nal step, the router uses PDPV to allocate the re-
maining output ports, where a single port is allocated to any �it
that was not allocated a port during IPA. PPA performs �nal port
allocation one �it at a time, in order of �it priority (as ranked by
PS). For each �it, a pending desired port (as listed in PDPV) is allo-
cated to the �it if (1) the port has not been allocated already and
(2) higher-ranked �its are not de�ected. If either condition is false,
the router de�ects the �it. De�ected �its are assigned to the �rst
unallocated port in the following order: N, E, S, W . We implement
port allocation in FPA using a Boolean logic function, which takes
in PDPV, a bit vector of unallocated ports, and a one-bit status
indicating if a higher-ranked �it was de�ected, and outputs the
port to assign to the current �it. �e port assignments made during
FPA are combined with the IAPV list from IPA to generate the �nal
port assignments for each �it.

Example Walk-through. We walk through an example allo-
cation under PPA, as shown in Figure 5b. In this example, PPA
needs to allocate output ports to three �its, where Flits 0 and 2
are unicast �its and Flit 1 is a multicast �it, and has received the
desired port vectors (DPVs) from PS (see Section 5.1). �ere is no
Flit 3 (which can happen when only three �its arrive at the router,

or when a �it is merged or killed during MEI; see Section 5.1), so
DPV3 is set to zero. A lower-numbered �it has higher priority, as
determined by PS. IPA uses the DPVs to determine that Ports E and
N are uncontended, as they are requested only by Flit 1. �erefore,
IPA sets IAPV1 (i.e., the initial allocated port vector for Flit 1) to
1010, assigning the two requested ports to Flit 1. All three of the
�its contend for Port S, so the port is not allocated by IPA.

During PPD, since Flit 1 already received a port, its pending desi-
red port vector (PDPV1) is zeroed out, to prevent it from receiving
any more ports. �is means that Flit 1 cannot acquire access to
Port S as it had initially requested, and thus will need to be repli-
cated to the nodes in the SW quadrant (see RC in Section 5.1) by
a subsequent router. DM, which takes place a�er port allocation,
ensures that the dstList of Flit 1 still contains the destination nodes
in the SW quadrant. PDPV0 and PDPV2 are the same as DPV0 and
DPV2, since Flit 0 and Flit 2 were not assigned any ports by IPA.

Finally, FPA takes place, starting with Flit 0 (the highest-ranked
�it). Since PDPV0 contains a request for Port S, which has not yet
been allocated, FPA assigns the port to Flit 0, se�ing its allocated
port vector (APV) to 0001. FPA skips Flit 1, since PDPV1 is zero,
indicating that the �it does not need any more ports. Instead, FPA
just copies IAPV1 to APV1, assigning the �it to the uncontended
ports it was allocated during IPA. For Flit 2, FPA cannot allocate
Port S to Flit 2, since it was already allocated to Flit 0. As a result,
FPA de�ects Flit 2, assigning it to the last unallocated port (PortW).
Since there is no Flit 3, APV3 is set to zero, and FPA �nishes.

Latency. We synthesize the RTL for our parallel port allocation
using Cadence Encounter [6] with the FreePDK 35nm standard
library [38]. We �nd that the latency of parallel port allocation
is 3.2ns, which is 54.3% less than the latency of sequential port
allocation (see PA in Section 5.1). As a result of the reduced latency,
the critical path latency of the router pipeline shi�s from the second
pipeline stage to the �rst pipeline stage, resulting in a 24.1% decrease
in the router clock cycle latency (see Section 7.5).

6 METHODOLOGY
We evaluate Carpool using a modi�ed version of NOCulator [3, 4,
22, 35], an open-source cycle-accurate network-on-chip simulator.
We perform our evaluations on a CMP that uses an 8×8 mesh on-
chip network. Each network hop takes three cycles: two cycles in
the router, and one cycle for link traversal. �e network is clocked
at the maximum possible frequency (i.e., we use the router critical
path latency of each network in Section 7.6 as the clock period).

For a multicast packet, our simulator randomly selects a valuem,
and randomly chooses m network nodes (not including the source
node) as the destinations for the packet. For hotspot packets, the
simulator randomly chooses a common destination node, selects a
random value h, and randomly selects h source nodes to generate a
hotspot packet that targets the common destination node. As Car-
pool utilizes half of the payload �eld to carry the 64-bit destination
or source list (dstList/srcList), each multicast and hotspot packet
requires two �its. Each unicast packet requires only one �it.

We evaluate the network using synthetic workloads that replicate
the packet injection rate, multicast, and hotspot behavior observed
in real systems running multithreaded applications [18, 31]. We
sweep the injection rate at which each node can generate a network
packet, from an injection rate of 0.02 packets/cycle/node up to the
rate at which the network reaches saturation. �is generated packet
has a set probability (mc-rate) of being a multicast packet and a
set probability (hs-rate) of being a hotspot packet, chosen with a
uniform random distribution. All other packets injected into the
network are unicast packets. Prior work [18, 31] has demonstrated
that for a real system running multithreaded applications, both mc-
rate and hs-rate are typically between 0.01 and 0.10. As a result, we
perform our injection rate sweeps using nine di�erent combinations

Carpool: A Bu�erless On-Chip Network with Adaptive Multicast and Hotspot Alleviation ICS ’17, June 14-16, 2017, Chicago, IL, USA

of mc-rate and hs-rate, where mc-rate and hs-rate can be set to 0.01
(low), 0.05 (medium) or 0.1 (high). For brevity, we show latency,
throughput, and power results for when mc-rate and hs-rate are
both low (which we call LowMC–LowHS), and when they are both
high (which we call HighMC–HighHS). We �nd that for the other
seven combinations that we do not show, we observe the same
trends that we see for the two combinations shown. Each of our
experiments runs until the network retires 10 million packets.

In order to quantify the area and latency of the three evaluated
networks, we implement each network in Verilog, and synthesize
the RTL of each network using Cadence Encounter [6] with the
FreePDK 35nm standard cell library [38] (where we set Vdd=1.1V
and assume a temperature of 25°C). We report the critical path
timing and area of each design in Section 7.6. �e static and dynamic
power consumption of each major network component is faithfully
obtained from RTL synthesis. �e link power is estimated using
DSENT [45] assuming that the wire length between adjacent nodes
is 2.5mm, and that the wire is driven at the same clock frequency
as the network router. As DSENT does not provide a library for the
35nm process technology that we use for RTL synthesis, we select
the 32nm library in DSENT to estimate the link power.

7 EVALUATION
We compare Carpool with (1) BLESS [33], a baseline bu�erless on-
chip network without support for multicast �it forking or hotspot
�it merging, and (2) a modi�ed version of FANIN/FANOUT [31]
(which we abbreviate as FANI/O). As originally proposed, FANI/O is
a routing algorithm for bu�ered networks that supports �it broad-
casting (a one-to-all �ow) and hotspot �it merging when all nodes
are sending a message to a common destination node (an all-to-one
�ow). We modify FANI/O to support multicasting and many-to-
one hotspot merging, by adding a destination list or a source list,
respectively, to the payload of each �it using the same encoding as
Carpool (see Section 4.1). For FANI/O, we assume that each physical
port has four virtual channels, each of which has a single bu�er for
a �it and independent �ow control.

7.1 Latency
Figure 6a shows the average packet latency as we vary the injection
rate when mc-rate and hs-rate are both low (LowMC–LowHS). We
make three key observations from the �gure. First, Carpool consis-
tently outperforms BLESS, reducing the average packet latency by
28.9% prior to saturation (injection rate < 0.24 packets/cycle/node).
In Carpool, each multicast packet requires only two cycles to inject
two multicast �its from the source node, whereas BLESS requiresm
(i.e., the number of destinations) cycles to inject m separate unicast
�its. Carpool further reduces network contention over BLESS by
opportunistically merging hotspot �its. Even when there are not
many multicast and hotspot packets in the network, this �it conso-
lidation in Carpool greatly improves network performance, due to
the high penalty incurred from transporting multiple unicast �its
for multicast or hotspot requests in BLESS. Second, even though it
lacks bu�ers, Carpool consistently outperforms FANI/O. FANI/O
bu�ers each request until a productive port for the request beco-
mes available, using a �xed routing protocol. As FANI/O does not
employ de�ection, it is unable to exploit path diversity within the
on-chip network. As a result, FANI/O has a 22.3% higher average
latency than Carpool. �ird, we observe that Carpool reaches sa-
turation at a higher injection rate (0.30 packets/cycle/node) than
both BLESS (0.24) and FANI/O (0.26).

Figure 6b shows the average packet latency as we vary the in-
jection rate when mc-rate and hs-rate are both high (HighMC–
HighHS). We make two key observations from the �gure. First, the
average packet latency is 57.3% lower in Carpool than the latency in
BLESS, prior to saturation (injection rate < 0.06 packets/cycle/node),
as Carpool enjoys even further bene�ts from multicast �it forking

0
200
400
600
800

0 0.1 0.2 0.3

Av
g.

 P
ac

ke
t

La
te

nc
y
(n
s)

Injection Rate (packets/cycle/node)

BLESS
FANI/O
Carpool

(a) LowMC–LowHS (0.01)

0

200

400

600

800

0 0.1 0.2 0.3

Av
g.

 P
ac

ke
t

La
te

nc
y
(n
s)

Injection Rate (packets/cycle/node)
(b) HighMC–HighHS (0.10)

Figure 6: Average packet latency vs. injection rate.

and hotspot �it merging whenmc-rate and hs-rate increase. Second,
Carpool has 34.5% lower latency than FANI/O when the injection
rate is low (≤ 0.06), but approaches saturation soon a�er (at an
injection rate of 0.10 packets/cycle/node). One issue with multicast
�its is that towards the end of a multicast �it’s route, the �it forks
into several replicas, eventually creating m copies for its m desti-
nation nodes. While Carpool improves over BLESS because the
m copies do not exist for much of the �it’s route, the network can
still incur heavy congestion close to the destination nodes. Like-
wise, hotspot �its incur heavy network congestion when they are
�rst generated. With its input bu�ers, complex �ow control logic,
and arbitration across virtual channels, FANI/O is more successful
at handling the heavy congestion close to the multicast �it desti-
nations and hotspot �it sources. However, to achieve this, FANI/O
consumes 2.7× more area (see Section 7.6). With the same area
budget, we can fragment Carpool into multiple sub-networks to
enhance its performance, as prior work has done for bu�erless
networks [51]. A�er fragmenting, each sub-network can run be-
low saturation to deliver lower latency and larger capacity (i.e.,
the overall network has a higher saturation point). We leave such
fragmentation for future work.

Across all nine combinations of low/middle/highmc-rate and hs-
rate values (not shown), Carpool reduces the average packet latency
by 43.1% over BLESS, and by 26.4% over FANI/O. We conclude that
Carpool successfully improves the performance of bu�erless on-
chip networks, with a low area overhead.

7.2 �roughput
Figures 7a and 7b show the throughput (expressed as �its comple-
ted per ns) of the three on-chip networks we evaluate for LowMC–
LowHS and HighMC–HighHS, respectively. We make two key ob-
servations from these two �gures.

0
1
2
3
4
5

0 0.1 0.2 0.3

Th
ro

ug
hp

ut

(fl
its
/n
s)

Injection Rate (packets/cycle/node)

BLESS
FANI/O
Carpool Ca

rp
oo

l
sa
tu
ra
tio

n

(a) LowMC–LowHS (0.01)

0
1
2
3
4
5

0 0.1 0.2 0.3

Th
ro

ug
hp

ut

(fl
its

/n
s)

Injection Rate (packets/cycle/node)

Ca
rp

oo
l

sa
tu

ra
tio

n

(b) HighMC–HighHS (0.10)
Figure 7: �roughput vs. injection rate.

First, compared with BLESS, Carpool has 31.5% and 85.3% higher
throughput for LowMC–LowHS and HighMC–HighHS, respectively,
prior to saturation. Carpool increases network throughput by wai-
ting to fork a multicast �it until it reaches an intermediate node,
and by merging hotspot �its. Near saturation, Carpool experiences
a sudden drop in throughput because the packet de�ection rate
increases. When a multicast �it is de�ected, multiple nodes must
wait longer to receive the �it, causing high throughput loss.

Second, compared with FANI/O, Carpool has 1.5× and 8.5×
higher throughput for LowMC–LowHS and HighMC–HighHS, res-
pectively, prior to saturation. In FANI/O,multicast �its fail to exploit
the path diversity of the network, leaving many nearby links unu-
sed while the �its wait at the input bu�er for a productive port to

ICS ’17, June 14-16, 2017, Chicago, IL, USA X. Xiang et al.

become available. Because the �its wait at the bu�er, the credit
turnaround time increases, which in turn decreases the throughput.

We conclude that by reducing multicast/hotspot �it congestion
and exploiting path diversity be�er through multicast �it forking,
Carpool provides be�er throughput than BLESS and FANI/O.

7.3 Power Consumption
Figures 8a and 8b show the power consumption of the on-chip
networks we evaluate for LowMC–LowHS and HighMC–HighHS,
respectively. We make three key observations from these �gures.
First, compared to BLESS, Carpool has similar power consumption
for LowMC–LowHS prior to saturation, despite requiring a greater
circuit area to support multicast �it forking and hotspot �it merging
(see Section 7.6). Second, for HighMC–HighHS, Carpool consumes
16.3% less power than BLESS because Carpool injects fewer packets
into the network and delivers each packet faster, reducing the over-
all activity and latency of the network. �ird, Carpool uses much
less power than FANI/O, reducing the average power consumption
prior to saturation by 56.7%/44.3% for LowMC–LowHS/HighMC–
HighHS. �ese power savings are the result of the reduced circuit
complexity (e.g., lack of bu�ers) of Carpool over FANI/O.

0
100
200
300
400

0 0.1 0.2 0.3

Po
w

er
 (W

)

Injection Rate (packets/cycle/node)

BLESS
FANI/O
Carpool

(a) LowMC–LowHS (0.01)

0

100

200

300

400

0 0.1 0.2 0.3

Po
w

er
 (W

)

Injection Rate (packets/cycle/node)
(b) HighMC–HighHS (0.10)

Figure 8: Power consumption vs. injection rate.

Across all nine combinations of low/middle/high mc-rate and
hs-rate values (not shown), Carpool reduces the average on-chip
network power consumption by 8.3% over BLESS, and by 50.5%
over FANI/O. We conclude that Carpool is an e�ective solution to
provide a low-power on-chip network under a wide and diverse
range of network tra�c pa�erns.

7.4 Performance Breakdown
To understand the individual bene�ts of enabling multicast �it
forking and hotspot �it merging separately, we compare the per-
formance of Carpool to two bu�erless on-chip networks: ForkOnly,
which enables only the multicast �it forking capability of Carpool;
andMergeOnly, which enables only the hotspot �it merging capabi-
lity of Carpool. Figure 9 shows the normalized latency, throughput,
and de�ection rate of these networks, normalized to Carpool for
each metric, for HighMC–HighHS. We make two observations from
this �gure. First, for both ForkOnly and MergeOnly, the �it de-
�ection rate increases signi�cantly, resulting in latency increases of
1.9× and 2.6×, respectively, over Carpool. Second, ForkOnly retains
most of the throughput of Carpool, while MergeOnly has much lo-
wer throughput, allowing ForkOnly to reduce network congestion
(and thus, packet latency) despite having a higher de�ection rate.

We also study the impact of employing adaptive multicast �it
forking (see Section 4.1). Figure 10 shows the average packet latency
of Carpool without and with adaptive forking, for medium values
(0.05) of mc-rate and hs-rate (which we call MedMC–MedHS). We
observe that both networks have similar latency at low injection
rates, when the network load is light. When the injection rate
exceeds 0.10, Carpool without adaptive forking leads to heavy
network congestion, causing the network to saturate at an injection
rate of 0.12. Adaptive forking is successful at reducing congestion
when the injection rate is higher, thus allowing the network to
sustain a much higher injection rate before it reaches saturation.

0

1

2

3

Normalized
Latency

Normalized
Throughput

Normalized
Deflection Rate

N
or

m
al

iz
ed

Va

lu
e

Carpool ForkOnly MergeOnly

Figure 9: Normalized latency, throughput, and de�ection
rate of Carpool, ForkOnly, and MergeOnly networks, nor-
malized to Carpool, for HighMC–HighHS.

0
100
200
300
400
500

0 0.03 0.06 0.09 0.12 0.15 0.18Av
er

ag
e

Pa
ck

et

La
te

nc
y

(n
s)

Injection Rate (packets/cycle/node)

Carpool without Adaptive Forking
Carpool with Adaptive Forking

Figure 10: E�ect of adaptive forking on average packet la-
tency, for MedMC–MedHS.

We conclude that multicast �it forking, hotspot �it merging, and
adaptive forking are all essential to enabling the high performance
provided by Carpool.

7.5 E�ect of Parallel Port Allocation
To study the e�ect of parallel port allocation (Section 5.2), we com-
pare Carpool to a version of Carpool that uses sequential port
allocation (called CarpoolSPA) for MedMC–MedHS, as shown in Fi-
gure 11. For unicast tra�c, prior work found that a relaxed priority
ordering for port allocation can increase the de�ection rate and
latency slightly [51]. We observe that due to parallel port allocation,
both the de�ection rate and the latency are lower for Carpool than
for CarpoolSPA. In CarpoolSPA, when a multicast �it has a higher
priority, the �it is replicated to all of its desired output ports (pro-
vided that the constraint in Equation 1 is not violated), even when
lower-priority �its are contending for those output ports. As a
result, a lower-priority �it is more likely to be de�ected, increasing
network contention. In contrast, parallel port allocation replicates
a multicast �it only when its desired output ports are uncontended,
thus ensuring that the replicas do not inadvertently de�ect lower-
priority �its. As shown in Figure 11, Carpool has 14% fewer forking
operations than CarpoolSPA. In addition to the reduced forking and
de�ection, parallel port allocation can shorten the latency of port
allocation by 54.3% over sequential port allocation (see Section 5.2).
We conclude that by be�er managing multicast fork replication,
parallel port allocation provides signi�cant performance bene�t
over sequential port allocation in Carpool.

0.0
0.5
1.0
1.5
2.0

Normalized
Latency

Normalized
Deflection Rate

Normalized
Fork Count

N
or

m
al

iz
ed

Va

lu
e

Carpool CarpoolSPA

Figure 11: E�ect of parallel port allocation.

7.6 Hardware Complexity
Using Cadence Encounter [6] to perform RTL synthesis, we obtain
the critical path latency and area of a router in Carpool, CarpoolSPA,
BLESS, FANI/O (where each of the four VCs can bu�er a single
�it), and FANI/O-4 (a variant of FANI/O where each of the four
VCs can bu�er four �its), as shown in Table 1. Compared with
CarpoolSPA, Carpool reduces the router critical path latency by
24.1% due to parallel port allocation, at the expense of only 2.4%

Carpool: A Bu�erless On-Chip Network with Adaptive Multicast and Hotspot Alleviation ICS ’17, June 14-16, 2017, Chicago, IL, USA

more router area. Although a router in Carpool consumes 19.2%
more area than in BLESS, its critical path latency is 5.7% lower,
and Carpool signi�cantly reduces the average packet latency and
power consumption over BLESS. Carpool reduces the router critical
path latency by 34.7% (or 35.9%), and the router area by 63.5%
(or 77.9%), over FANI/O (or FANI/O-4). �e small area and fast
timing of Carpool over FANI/O are mainly due to removed bu�ers
and simpli�ed control. Despite the much smaller area, Carpool
performs competitively with FANI/O, and even outperforms it when
mc-rate and hs-rate are not very high (see Figures 6a and 7a). We
conclude that Carpool delivers signi�cant network performance
improvement with low hardware complexity.
Table 1: Hardware cost comparison of a single router. Num-
bers in parentheses show cost normalized to Carpool.

Carpool CarpoolSPA BLESS FANI/O FANI/O-4

Critical Path 6.6 8.7 7.0 10.1 10.3
Latency (ns) (1.00×) (1.32×) (1.06×) (1.53×) (1.56×)

Area (µm2) 2,746,396 2,683,216 2,304,816 7,515,436 12,401,068
(1.00×) (0.98×) (0.84×) (2.74×) (4.52×)

8 CONCLUSION
Chip multiprocessors (CMPs) generate a signi�cant amount of on-
chip network requests that have either a one-to-many (i.e., multi-
cast) or many-to-one (i.e., hotspot) �ow. As the number of cores
within a CMP increases, one-to-many and many-to-one �ows result
in greater network congestion. Bu�erless on-chip networks, whose
lower hardware complexity is a good �t for CMPs as the core count
increases, do not currently provide e�cient hardware support for
these one-to-many or many-to-one �ows. In this work, we pro-
pose Carpool, the �rst bu�erless on-chip network optimized for
one-to-many and many-to-one tra�c. �e key ideas of Carpool are
to (1) adaptively fork �it replicas for multicast tra�c and (2) merge
hotspot �its, at intermediate routers within the network, both of
which reduce network contention and improves throughput, and
to (3) perform parallel port allocation to reduce router latency. We
conclude that with the multicast �it forking and hotspot �it mer-
ging support we introduce, we can improve the latency, throughput,
and power consumption of bu�erless on-chip networks without
requiring signi�cant additional circuit area.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their thoughtful comments
and suggestions. �is research was partially supported by the NSF
(grants 1212962, 1423302, 1527051, and 1527318).

REFERENCES
[1] P. Abad et al., “Rotary Router: An E�cient Architecture for CMP Interconnection

Networks,” in ISCA, 2007.
[2] P. Abad et al., “MRR: Enabling Fully Adaptive Multicast Routing for CMP Inter-

connect Networks,” in HPCA, 2009.
[3] R. Ausavarungnirun et al., “Design and Evaluation of Hierarchical Rings with

De�ection Routing,” in SBAC-PAD, 2014.
[4] R. Ausavarungnirun et al., “ACase for Hierarchical RingswithDe�ection Routing:

An Energy-E�cient On-Chip Communication Substrate,” PARCO, 2016.
[5] P. Baran, “On Distributed Communications Networks,” TCOM, 1964.
[6] Cadence Design Systems, Inc., “SOC Encounter User Guide,” h�p://www.cadence.

com/products/di/�rstencounter/.
[7] Y. Cai et al., “Comparative Evaluation of FPGA and ASIC Implementations of

Bu�erless and Bu�ered Routing Algorithms for On-Chip Networks,” in ISQED,
2015.

[8] J. G. Castanos et al., “Evaluation of a Multithreaded Architecture for Cellular
Computing,” in HPCA, 2002.

[9] K. K. Chang et al., “HAT: Heterogeneous Adaptive �ro�ling for On-Chip Net-
works,” in SBAC-PAD, 2012.

[10] C.-M. Chiang and L. M. Ni, “Multi-Address Encoding for Multicast,” in PCRCW,
1994.

[11] C. Craik and O. Mutlu, “Investigating the Viability of Bu�erless NoCs in Modern
Chip Multi-Processor Systems,” Carnegie Mellon Univ., SAFARI Research Group,
Tech. Rep. 2011-004, 2011.

[12] W. J. Dally and H. Aoki, “Deadlock-Free Adaptive Routing in Multicomputer
Networks Using Virtual Channels,” in TPDS, 2005.

[13] W. J. Dally and C. L. Seitz, “�e Torus Routing Chip,” Distributed Computing,
1986.

[14] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers, 2003.

[15] B. K. Daya et al., “�est for High-Performance Bu�erless NoCs with Single-Cycle
Express Paths and Self-Learning �ro�ling,” in DAC, 2016.

[16] E. Ebrahimi et al., “Prefetch-Aware Shared Resource Management for Multi-Core
Systems,” in ISCA, 2011.

[17] E. Ebrahimi et al., “Fairness via Source �ro�ling: A Con�gurable and High-
Performance Fairness Substrate for Multi-Core Memory Systems,” in ASPLOS,
2010.

[18] N. Enright Jerger et al., “Virtual Circuit Tree Multicasting: A Case for On-Chip
Hardware Support,” in ISCA, 2008.

[19] C. Fallin et al., “MinBD: Minimally-Bu�ered De�ection Routing for Energy-
E�cient Interconnect,” in NOCS, 2012.

[20] C. Fallin et al., “CHIPPER: A Low-Complexity Bu�erless De�ection Router,” in
HPCA, 2011.

[21] C. Fallin et al., “Bu�erless andMinimally-Bu�ered De�ection Routing,” in Routing
Algorithms in Networks-on-Chip. Springer, 2014.

[22] M. Fa�ah et al., “A Low-Overhead, Fully-Distributed, Guaranteed-Delivery Rou-
ting Algorithm for Faulty Network-on-Chips,” in NOCS, 2015.

[23] K. Goossens et al., “AEthereal Network on Chip: Concepts, Architectures, and
Implementations,” in IEEE D&T, 2005.

[24] P. Gratz et al., “Regional Congestion Awareness for Load Balance in Networks-
on-Chip,” in HPCA, 2008.

[25] M. Hayenga et al., “SCARAB: A Single Cycle Adaptive Routing and Bu�erless
Network,” in MICRO, 2009.

[26] Y. Jin et al., “A Domain-Speci�c On-Chip Network Design for Large Scale Cache
Systems,” in HPCA, 2007.

[27] P. Kermani and L. Kleinrock, “Virtual Cut-�rough: A New Computer Commu-
nication Switching Technique,” Computer Networks, 1979.

[28] H. Kim et al., “Clumsy Flow Control for High-�roughput Bu�erless On-Chip
Networks,” in CAL, 2013.

[29] H. Kim et al., “Extending Bu�erless On-Chip Networks to High-�roughput
Workloads,” in NOCS, 2014.

[30] J. Kim et al., “A Low Latency Router Supporting Adaptivity for On-Chip Inter-
connects,” in DAC, 2005.

[31] T. Krishna et al., “Towards the Ideal On-Chip Fabric for 1-to-Many andMany-to-1
Communication,” in MICRO, 2011.

[32] Z. Lu et al., “Connection-OrientedMulticasting inWormhole-Switched Networks-
on-Chip,” in ISVLSI, 2006.

[33] T.Moscibroda andO.Mutlu, “ACase for Bu�erless Routing inOn-ChipNetworks,”
in ISCA, 2009.

[34] C. A. Nicopoulos et al., “ViChaR: A Dynamic Virtual Channel Regulator for
Network-on-Chip Routers,” in MICRO, 2006.

[35] “NOCulator,” h�ps://github.com/CMU-SAFARI/NOCulator/.
[36] G. Nychis et al., “On-Chip Networks from a Networking Perspective: Congestion

and Scalability in Many-Core Interconnects,” in SIGCOMM, 2012.
[37] G. Nychis et al., “Next Generation On-Chip Networks: What Kind of Congestion

Control Do We Need?” in HotNets, 2010.
[38] Oklahoma State Univ., “FreePDK Standard Cell Libraries,” h�ps://vlsiarch.ecen.

okstate.edu/�ows/.
[39] A. Olofsson et al., “A 1024-Core 70 GFLOP/W Floating Point Manycore Microp-

rocessor,” in HPEC, 2011.
[40] S. Rodrigo et al., “E�cient Unicast and Multicast Support for CMPs,” in MICRO,

2008.
[41] F. A. Samman et al., “Multicast Pipeline Router Architecture for Network-on-

Chip,” in DATE, 2008.
[42] A. Singh et al., “GOAL: A Load-Balanced Adaptive Routing Algorithm for Torus

Networks,” in ISCA, 2003.
[43] B. Smith, “Architecture and Applications of the HEP Multiprocessor Computer

System,” SPIE, 1982.
[44] C. B. Stunkel et al., “A New Switch Chip for IBM RS/6000 SP Systems,” in SC,

1999.
[45] C. Sun et al., “DSENT – A Tool Connecting Emerging Photonics with Electronics

for Opto-Electronic Networks-on-Chip Modeling,” in NOCS, 2012.
[46] M. �o�ethodi et al., “Self-Tuned Congestion Control for Multiprocessor Net-

works,” in HPCA, 2001.
[47] J. S. Turner, “An Optimal Nonblocking Multicast Virtual Circuit Switch,” in

INFOCOM, 1994.
[48] L. Wang et al., “Recursive Partitioning Multicast: A Bandwidth-E�cient Routing

for Networks-on-Chip,” in NOCS, 2009.
[49] M. A. Watkins and D. H. Albonesi, “ReMAP: A Recon�gurable Heterogeneous

Multicore Architecture,” in MICRO, 2010.
[50] X. Xiang et al., “A Model for Application Slowdown Estimation in On-Chip

Networks and Its Use for Improving System Fairness and Performance,” in ICCD,
2016.

[51] X. Xiang and N.-F. Tzeng, “De�ection Containment for Bu�erless Network-on-
Chips,” in IPDPS, 2016.

[52] P.-C. Yew et al., “Distributing Hot-Spot Addressing in Large-Scale Multiproces-
sors,” in TC, 1987.

http://www.cadence.com/products/di/firstencounter/
http://www.cadence.com/products/di/firstencounter/
https://github.com/CMU-SAFARI/NOCulator/
https://vlsiarch.ecen.okstate.edu/flows/
https://vlsiarch.ecen.okstate.edu/flows/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Bufferless On-Chip Networks
	2.2 On-Chip Networks with Multicast Support
	2.3 Hotspot Alleviation in On-Chip Networks

	3 Motivation
	3.1 Impact of Multicast and Hotspot Flits
	3.2 Forking and Merging Flits

	4 Carpool Design
	4.1 Multicast Flit Forking
	4.2 Hotspot Flit Merging

	5 Router Microarchitecture
	5.1 Pipeline Design
	5.2 Parallel Port Allocation

	6 Methodology
	7 Evaluation
	7.1 Latency
	7.2 Throughput
	7.3 Power Consumption
	7.4 Performance Breakdown
	7.5 Effect of Parallel Port Allocation
	7.6 Hardware Complexity

	8 Conclusion
	References

